

# Drought Stress Reshapes Secondary Metabolism in Safflower (*Carthamus tinctorius* L.): Insights from GC-MS Metabolomics and Bioinformatic Analysis

Veena N. H<sup>1</sup>, Shruthi H. G<sup>1</sup>, Rajasreelatha V<sup>2</sup>, Thippeswamy M<sup>1\*</sup>

<sup>1</sup>Department of Studies in Botany, Davangere University, Davanagere 577002, India

<sup>2</sup>Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India

\*Corresponding Author E-mail: [thippeswamym@davangereuniversity.ac.in](mailto:thippeswamym@davangereuniversity.ac.in)

## Abstract:

Abiotic stress-induced secondary metabolism is a key determinant of plant survival under adverse environments, and *Carthamus tinctorius* L. (safflower), a drought-resilient oilseed and medicinal crop, exhibits a strong capacity to accumulate bioactive metabolites under stress. In this study, GC-MS profiling of methanolic leaf extracts was integrated with bioinformatic analyses to elucidate drought-responsive secondary metabolism in safflower. GC-MS analysis revealed a diverse array of stress-induced metabolites, including phenolic acids, flavonoids, fatty acids, sterols, and terpenoids, with the notable accumulation of octahydrocurcumin, a potent antioxidant. The enrichment of phenolic and lipid-derived compounds under drought stress indicates the activation of antioxidant defense mechanisms and redox homeostasis pathways. To establish a molecular link to the observed metabolomic changes, the NCBI safflower sequence database was searched for transcripts showing homology associated with octahydrocurcumin-related stress responses. This analysis identified a drought-responsive transcript, GW584119, as a candidate sequence. The authors had previously constructed a drought-responsive cDNA library from safflower, and the nucleotide sequence corresponding to this transcript was submitted to the NCBI database under accession number GW584119. Bioinformatic characterization revealed significant sequence homology associated with octahydrocurcumin-related pathways. Comparative sequence analysis further showed partial homology with a corresponding gene in the model crop *Arabidopsis thaliana* (AT1G31020). Protein-protein interaction and subcellular localization analyses suggested the involvement of the encoded protein in stress-related metabolic networks, while expression profiling of AT1G31020 confirmed stress-responsive expression patterns. Overall, the integrated metabolomic and computational evidence establishes a direct link between drought stress, octahydrocurcumin accumulation, and gene-level regulation in safflower, highlighting octahydrocurcumin as a promising biochemical and molecular marker for abiotic stress tolerance and a potential target for the development of stress-resilient crops.

**Keywords:** Drought Stress; Secondary Metabolites; Safflower; GC Analysis; Octahydrocurcumin

---

Received: Nov. 09, 2025

Revised: Dec.23, 2025

Accepted: Jan. 26, 2026

Published: Feb 8, 2026

**DOI:** <https://doi.org/10.64062/JPGBM.Vol2.Issue1.6>

<https://jpmb.com/1/issue/archive>

*This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers. (<https://creativecommons.org/licenses/by-nc/4.0/>)*

**1. INTRODUCTION**

Safflower (*Carthamus tinctorius* L.), a member of the family Asteraceae, is an ancient but long-neglected dual-purpose medicinal and oilseed crop that has attracted considerable scientific and agronomic attention in recent years. Traditionally cultivated in marginal environments, safflower is valued for its adaptability to harsh climatic conditions and its diverse applications in agriculture, medicine, and industry<sup>1</sup>. Renewed interest in this crop is largely driven by its rich composition of bioactive secondary metabolites and its potential contribution to sustainable crop production in arid and semi-arid regions. Numerous pharmacological studies have demonstrated that *C. tinctorius* extracts exhibit a wide range of therapeutic properties, including antioxidant, anticoagulant, antihypertensive, antitumor, and immunosuppressive activities, along with hepatoprotective and vasodilatory effects<sup>2</sup>. In addition, safflower has been traditionally used for the inhibition of melanin production and the treatment of gynecological disorders such as dysmenorrhea<sup>3</sup>. These health-promoting properties are primarily attributed to the presence of phenolic acids, flavonoids, and other specialized secondary metabolites. In recent years, attention has also been drawn to curcuminoid-related compounds, particularly octahydrocurcumin, and a hydrogenated derivative of curcumin with markedly enhanced antioxidant stability and bioavailability compared to its parent compound. Octahydrocurcumin has been reported to exhibit strong free radical-scavenging activity, anti-inflammatory potential, and protective effects against oxidative stress-induced cellular damage, making it a promising antioxidant metabolite in stress biology and functional food research<sup>4</sup>. The antioxidant capacity of such secondary metabolites is largely associated with their ability to neutralize reactive oxygen species (ROS) and other oxidizing molecules involved in free-radical generation<sup>5</sup>. Epidemiological and experimental studies further indicate that diets rich in flavonoids, phenolics, and curcuminoid derivatives significantly reduce the risk of tumor development and contribute to the prevention of chronic diseases<sup>6</sup>. Crop productivity in arid and semi-arid ecosystems is severely constrained by environmental stresses, among which water deficit is one of the most critical factors affecting plant growth and development. Drought stress induces profound changes in physiological and biochemical processes, often resulting in oxidative stress due to excessive ROS accumulation<sup>7,8</sup>. To mitigate these effects, plants activate complex defense mechanisms, including the enhanced synthesis of phenolic, flavonoid, and related antioxidant metabolites that function as non-enzymatic protectants<sup>9</sup>. Several studies have documented drought-induced modulation of phenolic metabolism across species. In safflower, moderate water deficit increased phenolic acid content in flowers, though seed responses remain poorly understood<sup>10,11</sup>. Similar tissue-specific responses have been reported in peanut<sup>12</sup>, *Pistacia*<sup>13</sup>, and *Achillea* species<sup>14</sup>, highlighting the species- and organ-dependent nature of stress-induced secondary metabolism.

Safflower is also a valuable oilseed crop, yielding approximately 32 - 40% oil rich in essential fatty acids and nutrients. Beyond oil production, its leaves and flowers possess significant medicinal and industrial importance, including applications in cardiovascular therapy and natural dye production. Despite its multipurpose value, limited information is available on the genetic and biochemical variability of phenolic, flavonoid, and curcuminoid-related compounds - particularly octahydrocurcumin - in safflower flowers and seeds under drought stress. Although safflower is widely regarded as drought tolerant, experimental evidence linking this trait to specific biochemical and molecular mechanisms remains scarce.

Elucidating the role of stress-induced metabolites such as octahydrocurcumin in safflower adaptation is therefore crucial for identifying reliable biochemical markers of drought tolerance and for developing improved genotypes with enhanced resilience and phytochemical value.

## **2. MATERIALS AND METHODS**

### **2.1. Collection of Safflower samples under drought stress conditions**

The leaf samples of *Carthamus tinctorius* L. were collected from Ganagatti village, Kudligi taluk, Ballary district, Karnataka, India - a semi-arid region frequently exposed to low and erratic rainfall. The plants selected for sampling were naturally subjected to drought stress conditions, characterized by prolonged soil moisture deficit and high ambient temperatures during the growing season. Such environmental conditions are known to induce physiological and biochemical stress responses in plants, including the enhanced synthesis of stress-responsive secondary metabolites such as phenolics and flavonoids<sup>11</sup>.

The collected leaves were thoroughly cleaned and shade-dried at ambient room temperature for approximately one week to prevent degradation of thermo-labile and photo-sensitive phytochemicals. After complete drying, the plant material was finely powdered using a mechanical blender and stored in airtight containers until further extraction and analysis. Shade drying and powdering were performed to ensure uniformity of samples and to preserve drought stress-induced metabolites, as reported in earlier studies on stress-mediated phytochemical accumulation<sup>11,16</sup>.

### **2.2. Extraction of Secondary Metabolites from Drought-Stressed Safflower Leaves**

The dried and powdered leaf material of *Carthamus tinctorius* L. (25 g), collected from plants exposed to natural drought stress, was subjected to Soxhlet extraction to obtain stress-induced secondary metabolites. Drought stress is known to stimulate the accumulation of defense-related phytochemicals such as phenolics, flavonoids, and terpenoids; therefore, an exhaustive extraction technique was employed to ensure maximum recovery of these compounds. The powdered sample was extracted separately with 300 mL of methanol and dichloromethane, representing polar and semi-polar solvents, respectively, to solubilize a wide range of drought-responsive metabolites. Continuous boiling and refluxing in a Soxhlet apparatus allowed repeated solvent percolation through the plant matrix, thereby enhancing extraction efficiency and ensuring thorough recovery of intracellular metabolites accumulated under stress conditions. Following extraction, the solvent extracts were filtered to remove particulate matter and concentrated by solvent evaporation under reduced temperature conditions. The resulting semi-liquid crude extracts were transferred to sterile glass containers and stored until further qualitative phytochemical screening, quantification of phenolic and flavonoid contents, and GC-MS analysis. This extraction strategy enabled effective profiling of drought stress-induced secondary metabolites in safflower leaves<sup>15</sup>.

### **2.3. Qualitative phytochemical analysis**

Qualitative phytochemical screening was performed to identify the major phytocomponents present in the methanolic extract of safflower (*Carthamus tinctorius* L.). This analysis involved standard laboratory tests based on characteristic reactions such as changes in color, formation of precipitates, or development of specific odors, which indicate the presence or absence of different classes of compounds. The methanolic extract was screened for secondary metabolites including alkaloids, phenolic compounds, flavonoids, terpenoids, proteins, carbohydrates, oils, resins, and saponins using established protocols.

#### **2.4. Determination of Total Phenolic Content**

Total phenolic content (TPC) of the samples was determined using the Folin–Ciocalteu method. Briefly, 1 mL of the sample was mixed with 0.4 mL of Folin–Ciocalteu reagent (diluted 1:1, v/v) and 0.6 mL of distilled water. After incubation at room temperature for 30 min, 1 mL of 8% (w/v) sodium carbonate was added, followed by 3 mL of distilled water. The reaction mixture was allowed to stand for 40 min at room temperature, and absorbance was measured at 750 nm using a spectrophotometer against a reagent blank. Total phenolic content was quantified using a gallic acid standard calibration curve and expressed as gallic acid equivalents (GAE)<sup>17</sup>.

#### **2.5. Determination of total flavonoid content**

Total flavonoid content was determined by using the following method<sup>18</sup>. In a 10 ml of test tube 0.3 ml of extract 0.4 ml of 30% methanol 0.15 ml of 0.5M NaNO<sub>2</sub> and 0.15 ml of 0.3 M AlCl<sub>3</sub> 6H<sub>2</sub>O were mixed. After 5 minutes 1 ml of 1 M NaOH was added. The solution was mixed well and absorbance was measured against the reagent blank at 560 nm. The standard curve for total flavonoid was made using rutin standard solution (0 to 100 mg/L) under same procedure has easier described. The total flavonoid content were expressed as milligram of rutin equivalent per g of dried fraction.

#### **2.6. GC-MS Analysis**

The chemical composition of crude plant extracts was characterized using Gas Chromatography–Mass Spectrometry (GC–MS) to generate a comprehensive phytochemical fingerprint. Analyses were performed on a Thermo GC-Trace Ultra Version 5.0 gas chromatograph coupled with a Thermo DSQ II single quadrupole mass spectrometer, which provides high sensitivity and reproducibility for the detection of volatile and semi-volatile compounds. Separation of constituents was achieved using a ZB-5MS capillary column (30 m × 0.25 mm i.d., 0.25 μm film thickness) containing a stationary phase of 95% dimethylpolysiloxane and 5% phenyl, widely used for profiling complex plant metabolites, including terpenoids and phenolics. The oven temperature program was set initially at 70°C for 2 min, followed by a gradual increase to 260°C at 6°C min<sup>-1</sup>, with a final hold of 10 min, ensuring efficient resolution of compounds with varying volatilities. A 10 μL aliquot of the filtered and diluted extract was injected using an auto-sampler in splitless mode with a splitless time of 1 min to enhance detection of low-abundance constituents. Helium (99.999% purity) was used as the carrier gas at a constant flow rate of 1.0 mL min<sup>-1</sup>. Mass spectrometric detection was performed in electron impact (EI) ionization mode at 70 eV, scanning a mass range of 40–650 m/z. The ion source and interface temperatures were maintained at 200°C and 250°C, respectively. Compound identification was accomplished by comparing mass spectra with those in the NIST library database, using similarity indices for confirmation. This analytical approach enabled qualitative and semi-quantitative profiling of phytochemical constituents, providing insights into the chemical basis of the observed biological activities.

#### **2.7. Bioinformatic Analysis of Octahydrocurcumin-Associated Gene under Abiotic Stress**

##### **2.7.1 Retrieval of Nucleotide and Amino Acid Sequences**

The drought-responsive safflower transcript GW584119, previously identified from a cDNA library constructed under abiotic (drought) stress conditions, was selected for detailed bioinformatic analysis. The nucleotide sequence of GW584119 was retrieved from the NCBI database using its accession number. The corresponding amino acid sequence was deduced by

in silico translation using the ExPASy Translate tool, and the longest open reading frame (ORF) was selected for further analyses.

To assess evolutionary conservation, the homologous gene AT1G31020 from the model plant *Arabidopsis thaliana* was retrieved from TAIR and NCBI databases for comparative analysis.

### **2.7.2. Sequence Similarity and Functional Annotation**

Homology searches were performed using BLASTn and BLASTp against the NCBI non-redundant database to identify conserved sequences and functional similarity with known proteins. Functional annotation of the deduced protein was conducted using InterProScan, Pfam, and SMART databases to identify conserved domains, motifs, and signatures associated with secondary metabolite biosynthesis, stress response, or regulatory functions. Gene Ontology (GO) annotations were assigned to classify the protein into biological processes, molecular functions, and cellular components relevant to abiotic stress adaptation.

### **2.7.3. Protein–Protein Interaction (PPI) Analysis**

Protein–protein interaction analysis was performed using the STRING database, employing the *Arabidopsis thaliana* homolog AT1G31020 as a reference due to the limited availability of interaction data for safflower. The predicted interaction network was analyzed to identify associations with proteins involved in abiotic stress signaling, antioxidant defense, lipid metabolism, and secondary metabolite biosynthesis. Only high-confidence interactions were considered for biological interpretation.

### **2.7.4. Subcellular Localization Prediction**

The subcellular localization of the GW584119-encoded protein was predicted using multiple in silico tools, including WOLF PSORT, TargetP, CELLO, and SUBA5 to increase prediction accuracy. Localization results were compared across tools to determine the most probable cellular compartment, providing insight into the functional role of the protein in stress-induced metabolic pathways.

### **2.7.5. Expression Analysis in *Arabidopsis thaliana***

Expression analysis of the homologous gene AT1G31020 was performed using publicly available transcriptomic datasets retrieved from TAIR, Gene Expression Omnibus (GEO), and Expression Atlas databases. Gene expression patterns were analyzed under drought and other abiotic stress conditions to evaluate stress-responsive regulation. Comparative expression profiling supported the functional relevance of GW584119 in drought-induced secondary metabolism.

## **3. RESULTS**

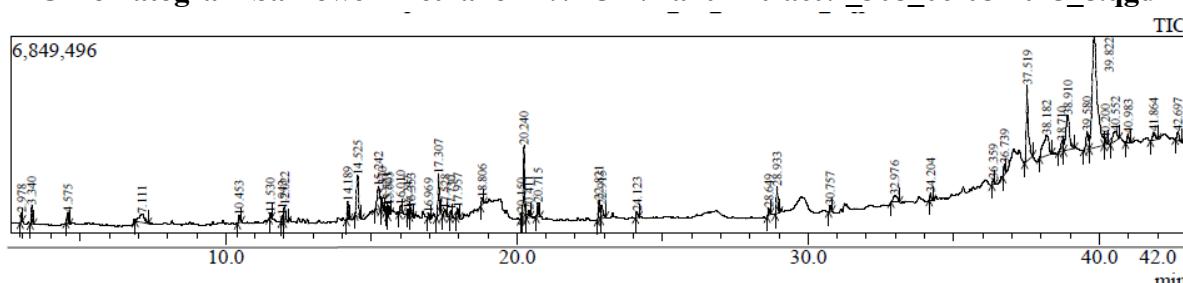
### **3.1. Collection of Samples and Extraction Efficiency**

Safflower (*Carthamus tinctorius* L.) plants grown under control and abiotic stress conditions were successfully harvested at the defined developmental stage. Plant tissues (leaves/flowers/seeds, as applicable) exhibited visible physiological differences under stress conditions, including reduced biomass and altered pigmentation, indicating effective stress imposition. Methanolic extraction yielded concentrated crude extracts with higher extractive values in stress-treated samples compared to controls, suggesting enhanced accumulation of secondary metabolites under abiotic stress.

### **3.2. Preliminary Phytochemical Screening**

Qualitative phytochemical analysis of the methanolic extracts revealed the presence of several major classes of secondary metabolites. The stress-treated samples tested positive for

phenolics, flavonoids, alkaloids, terpenoids, tannins, saponins, and glycosides, although the intensity of reactions was markedly higher in stress-exposed plants. Notably, phenolic and flavonoid reactions were strongly positive in stressed samples, indicating stress-induced metabolic reprogramming favoring antioxidant compound synthesis. Carbohydrates and proteins were detected in moderate amounts, while steroids were either absent or present in trace quantities (Table 1).


**Table 1: Qualitative phytochemical screening of Safflower using methanol extract.**

| Test                             | Method              | Procedure                                                                              | Observation                                        |
|----------------------------------|---------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|
| Detection of carbohydrates       | Seliwanoff's test   | 1 ml extraction solution + 3 ml seliwanoff's reagent + heated on water bath for 1 min  | Rose red colour                                    |
| Detection of carboxylic acid     | Effervescent test   | 1 ml plant extract + sodium bicarbonate solution                                       | Appear of effervescence                            |
| Detection of quinones            | Alcoholic KOH test  | 1 ml of plant extract + few ml of alcoholic KOH                                        | Red or blue colour                                 |
|                                  | Conc. HCl test      | Plant extract + Conc. HCl                                                              | Green colour                                       |
| Detection of phenolic compound   | Lead acetate test   | Plant extract is dissolved in 5 ml distilled water + 3 ml of 10% lead acetate solution | White precipitate                                  |
| Detection of fixed oils and fats | Saponification test | Extract + few drops of 0.5 N alcoholic KOH + drop of phenolphthalein (heated for 2hr)  | Soap formation or partial neutralization of alkali |
|                                  |                     | Extract solution is applied on filter paper                                            | A transparent appearance (oils and resins)         |

### 3.3. GC-MS Profiling of Secondary Metabolites

GC-MS analysis of methanolic extracts from drought-stressed safflower (*Carthamus tinctorius* L.) leaves revealed a diverse array of secondary metabolites encompassing alcohols, organic acids, phenolics, fatty acids, sterols, terpenoids, and long-chain hydrocarbons (Figure 1). The detected compounds indicate a strong stress-responsive metabolic reprogramming, particularly toward lipid remodeling and antioxidant defense (Table 2).

**Chromatogram Safflower-Methanol D:\KUD\Plant Extract\2\_308\_06-08-2025\_8.qgd**



**Figure 1: GC-MS graph of methanol extract of Safflower**

### 3.3.1 Accumulation of Phenolics and Antioxidant Metabolites

Several phenolic and phenylpropanoid derivatives such as catechol, vanillic acid, 2-methoxy-4-vinylphenol, benzenepropanol (4-hydroxy-3-methoxy-), sinapyl alcohol, ethyl 3,4-dihydroxybenzoate, and (E)-3,3'-dimethoxy-4,4'-dihydroxystilbene were identified. These compounds are well-known ROS scavengers and their enhanced presence under drought stress suggests activation of the phenylpropanoid pathway to counteract oxidative damage.

### 3.3.2. Fatty Acids, Lipid Esters, and Membrane Remodeling

A prominent feature of the metabolite profile was the abundance of fatty acids and lipid-derived molecules, including n-hexadecanoic acid (palmitic acid), 10E,12Z-octadecadienoic acid, azelaic acid, phytol linoleate, glycerol esters, and hexadecanoic acid derivatives. The accumulation of these lipids under drought stress is closely associated with the activity of phospholipase D (PLD), a key enzyme involved in membrane lipid hydrolysis.

PLD catalyzes the hydrolysis of membrane phospholipids to generate phosphatidic acid (PA), a crucial lipid signaling molecule. PA acts as a secondary messenger that regulates stress-responsive signaling cascades, membrane stability, and downstream fatty acid metabolism. The increased detection of free fatty acids and lipid esters in drought-stressed safflower strongly supports the role of PLD-mediated lipid turnover in stress adaptation.

### 3.3.3. Sterols, Terpenoids, and Stress Tolerance

The presence of sterols and triterpenoids such as stigmasterol,  $\gamma$ -sitosterol, cholesta-4,6-dien-3-ol, epilupeol,  $\beta$ -amyrone, betulinaldehyde, and epoxyolean derivatives indicates reinforcement of membrane rigidity and integrity under dehydration stress. These compounds are known to stabilize cellular membranes and modulate fluidity, thereby enhancing tolerance to water deficit.

### 3.3.4. Stress-Induced Signaling and Defense Compounds

Compounds such as azelaic acid, reported as a mobile stress signal in plants, and octahydrocurcumin, with strong antioxidant potential, further highlight the activation of systemic stress signaling and defense mechanisms in safflower under drought conditions.

Sequence analysis of GW584119 (NCBI accession number) revealed significant homology with octahydrocurcumin-related sequences identified from the authors' previously constructed drought stress-induced cDNA library. This observed similarity suggests the activation of curcuminoid-associated metabolic pathways in safflower under drought stress conditions and is consistent with the accumulation of octahydrocurcumin detected in the present GC-MS analysis.

**Table 2: The 48 phytocompounds detected in the methanolic extract of Safflower.**

| Peak# | R.Time | Area    | Area % | Similarity | Base m/z | CAS#       | Name                                              |
|-------|--------|---------|--------|------------|----------|------------|---------------------------------------------------|
| 1     | 2.978  | 653186  | 0.40   | 96         | 55.10    | 123-51-3   | 1-Butanol, 3-methyl-                              |
| 2     | 3.340  | 1735535 | 1.07   | 97         | 91.10    | 108-88-3   | Toluene                                           |
| 3     | 4.575  | 1402126 | 0.87   | 96         | 60.05    | 503-74-2   | Butanoic acid, 3-methyl-                          |
| 4     | 7.111  | 3721684 | 2.30   | 93         | 61.05    | 56-81-5    | Glycerin                                          |
| 5     | 10.453 | 1009934 | 0.62   | 95         | 110.05   | 120-80-9   | Catechol                                          |
| 6     | 11.530 | 475668  | 0.29   | 82         | 43.05    | 92351-84-3 | Acetic caproic anhydride                          |
| 7     | 11.943 | 717492  | 0.44   | 73         | 87.05    | 24222-06-8 | Valeric acid, 2,3-epoxy-3,4-dimethyl-, tert-butyl |

|    |        |         |      |    |        |            |                                                              |
|----|--------|---------|------|----|--------|------------|--------------------------------------------------------------|
|    |        |         |      |    |        |            | ester, cis-                                                  |
| 8  | 12.022 | 2008284 | 1.24 | 89 | 150.10 | 7786-61-0  | 2-Methoxy-4-vinylphenol                                      |
| 9  | 14.189 | 1649843 | 1.02 | 84 | 126.05 | 39212-21-0 | 3-Furanacetic acid, 4-hexyl-2,5-dihydro-2,5-dioxo-           |
| 10 | 14.525 | 7387307 | 4.56 | 96 | 60.05  | 2595-97-3  | D-Allose                                                     |
| 11 | 15.242 | 5068324 | 3.13 | 68 | 180.10 | 121-34-6   | Vanillic acid                                                |
| 12 | 15.370 | 1744245 | 1.08 | 87 | 61.05  | 6018-27-5  | DL-Arabinitol                                                |
| 13 | 15.521 | 553408  | 0.34 | 83 | 149.05 | 84-66-2    | Diethyl Phthalate                                            |
| 14 | 15.605 | 701995  | 0.43 | 76 | 177.20 | 66512-56-9 | (3S,3aS,5R,6S,7aS)-3,6,7,7-Tetramethyloctahydro-3a,6-etha    |
| 15 | 16.010 | 1110935 | 0.69 | 72 | 60.05  | 123-99-9   | Azelaic acid                                                 |
| 16 | 16.247 | 339504  | 0.21 | 88 | 137.10 | 2305-13-7  | Benzeneopropanol, 4-hydroxy-3-methoxy-                       |
| 17 | 16.353 | 890039  | 0.55 | 84 | 182.10 | 134-96-3   | Benzaldehyde, 4-hydroxy-3,5-dimethoxy-                       |
| 18 | 16.969 | 361112  | 0.22 | 93 | 82.10  | 2765-11-9  | Pentadecanal                                                 |
| 19 | 17.307 | 4316402 | 2.67 | 92 | 137.10 | 32811-40-8 | (E)-4-(3-Hydroxyprop-1-en-1-yl)-2-methoxyphenol              |
| 20 | 17.528 | 1257260 | 0.78 | 84 | 137.05 | 3943-89-3  | Ethyl 3,4-dihydroxybenzoate                                  |
| 21 | 17.730 | 682793  | 0.42 | 78 | 126.05 | 0-00-0     | Butanedioic acid, 2-isopropenyl-2-methyl-                    |
| 22 | 17.957 | 1087532 | 0.67 | 79 | 124.10 | 0-00-0     | 2,6,8-Trimethylbicyclo[4.2.0]oct-2-ene-1,8-diol              |
| 23 | 18.806 | 659595  | 0.41 | 87 | 149.05 | 0-00-0     | Phthalic acid, butyl tetradecyl ester                        |
| 24 | 20.150 | 626621  | 0.39 | 94 | 149.05 | 84-74-2    | Dibutyl phthalate                                            |
| 25 | 20.240 | 8805523 | 5.44 | 93 | 73.05  | 57-10-3    | n-Hexadecanoic acid                                          |
| 26 | 20.411 | 1073317 | 0.66 | 74 | 137.10 | 21657-90-9 | 3,7-Cyclodecadiene-1-methanol, .alpha.,.alpha.,4,8-tetrameth |
| 27 | 20.715 | 1571058 | 0.97 | 83 | 167.10 | 20675-96-1 | trans-Sinapyl alcohol                                        |
| 28 | 22.821 | 2458273 | 1.52 | 94 | 67.10  | 2420-56-6  | 10E,12Z-Octadecadienoic acid                                 |
| 29 | 22.915 | 2198699 | 1.36 | 89 | 55.10  | 537-39-3   | 9-Octadecenoic acid, 1,2,3-propanetriyl ester, (E,E,E)-      |
| 30 | 24.123 | 631210  | 0.39 | 77 | 147.15 | 0-00-0     | 6-Isopropenyl-4,8a-dimethyl 1,2,3,5,6,7,8,8a-octahydro-naph  |
| 31 | 28.649 | 852396  | 0.53 | 87 | 98.10  | 23470-00-0 | Hexadecanoic acid, 2-hydroxy-1                               |

|    |        |          |       |    |        |            |                                                          |
|----|--------|----------|-------|----|--------|------------|----------------------------------------------------------|
|    |        |          |       |    |        |            | (hydroxymethyl)ethyl ester                               |
| 32 | 28.933 | 3253506  | 2.01  | 96 | 149.05 | 117-81-7   | Bis(2-ethylhexyl) phthalate                              |
| 33 | 30.757 | 661222   | 0.41  | 87 | 272.15 | 7329-69-3  | (E)-3,3'-Dimethoxy-4,4'-dihydroxystilbene                |
| 34 | 32.976 | 2355855  | 1.46  | 78 | 207.15 | 0-00-0     | (14.beta.)12,13-Epoxyolean-3-ol, acetate                 |
| 35 | 34.204 | 903839   | 0.56  | 85 | 57.10  | 7194-84-5  | Heptatriacontane                                         |
| 36 | 36.359 | 653723   | 0.40  | 80 | 135.10 | 14214-69-8 | Cholesta-4,6-dien-3-ol, (3.beta.)-                       |
| 37 | 36.739 | 1147964  | 0.71  | 81 | 137.10 | 36062-07-4 | Octahydrocurcumin                                        |
| 38 | 37.519 | 13255960 | 8.19  | 83 | 137.10 | 863913-65- | (E)-1-(4-Hydroxy-3-methoxyphenyl)dec-3-en-5-one          |
| 39 | 38.182 | 9865081  | 6.10  | 89 | 95.10  | 53950-59-7 | Phytol linoleate                                         |
| 40 | 38.710 | 1956094  | 1.21  | 68 | 55.10  | 83-48-7    | Stigmasterol                                             |
| 41 | 38.910 | 10596277 | 6.55  | 80 | 95.10  | 139328-80- | Isolinderenolide                                         |
| 42 | 39.580 | 3467436  | 2.14  | 85 | 145.10 | 83-47-6    | gamma.-Sitosterol                                        |
| 43 | 39.822 | 46979741 | 29.03 | 87 | 189.20 | 0-00-0     | Epilupeol                                                |
| 44 | 40.200 | 942626   | 0.58  | 67 | 218.25 | 638-97-1   | beta.-Amyrone                                            |
| 45 | 40.552 | 3527641  | 2.18  | 84 | 189.20 | 13159-28-9 | Betulinaldehyde                                          |
| 46 | 40.983 | 1423323  | 0.88  | 78 | 174.15 | 567-72-6   | Cholesta-3,5-dien-7-one                                  |
| 47 | 41.864 | 1621239  | 1.00  | 77 | 151.10 | 172823-68- | Phenol,2,6-dimethoxy-4-[tetrahydro-4-(4-hydroxy-3-methox |
| 48 | 42.697 | 1473792  | 0.91  | 85 | 189.20 | 0-00-0     | Epilupeol                                                |

### 3.4. Total Phenolic Content (TPC)

Quantitative estimation using the Folin–Ciocalteu assay demonstrated a significant increase in total phenolic content in safflower extracts subjected to abiotic stress plants. The TPC values, expressed as gallic acid equivalents (GAE), were consistently higher in stressed tissues, indicating enhanced phenylpropanoid pathway activity. The strong linearity of the gallic acid standard curve confirmed the reliability of the assay and the total phenolic content was recorded 718 µg/g

### 3.5. Total Flavonoid Content (TFC)

Total flavonoid content analysis revealed trends similar to those observed for phenolic compounds. Abiotic stress significantly elevated flavonoid levels in safflower extracts, expressed as quercetin equivalents. Stress-treated samples showed a pronounced increase in flavonoid concentration. The enhanced flavonoid accumulation under stress conditions suggests their involvement in reactive oxygen species scavenging and cellular protection. The strong linearity of the quercetin standard curve confirmed the reliability of the assay and the total phenolic content was recorded 567 µg/g

### 3.6 Bioinformatic Characterization of the Octahydrocurcumin-Associated Gene GW584119

### 3.6.1 Retrieval and Sequence Analysis

The drought-responsive safflower transcript GW584119 was successfully retrieved from the NCBI database. The closest homolog was identified as AT1G31020 from *Arabidopsis thaliana*, supporting the use of this model system for functional interpretation (Figure 2). The nucleotide sequence contained a complete open reading frame encoding a predicted protein of defined length. Translation of the nucleotide sequence yielded a stable amino acid sequence suitable for downstream functional analyses. Comparative BLAST analysis revealed significant sequence similarity between GW584119 and stress-responsive proteins from other plant species, indicating evolutionary conservation.

<https://www.ncbi.nlm.nih.gov/nuccore/GW584119.1?report=fasta> &  
<https://www.arabidopsis.org/sequence?key=630389>

#### CtDI\_P7\_56 Safflower (A-1) drought stressed subtracted cDNA library *Carthamus tinctorius* cDNA similar to ATO2 (*Arabidopsis* thioredoxin 02), mRNA sequence

GenBank: GW584119.1

[GenBank](#) [Graphics](#)

>GW584119.1 CtDI\_P7\_56 Safflower (A-1) drought stressed subtracted cDNA library *Carthamus tinctorius* cDNA similar to ATO2 (*Arabidopsis* thioredoxin 02), mRNA sequence  
 GCGCTCTGCCGAAATTCAATCACTGTTCATCACCTCTCCAGGTCACTCTCATCGCGACAGTCGGGCCA  
 TATAATCTTGTAACTAGCTTACTTCAACAGGTTCTGTGAAATCTTGTCTACTCTCTG  
 TTGCGGGGTGCGTCACTGCACTGCTATCTCCGCTTATTGGGGAGGTGATATCTCCATTACTGATGA  
 CTCACCGACAAAATTGCTATC GACCCCACTGCTCATTTGATGCTTGCAGAAATGACTCATGGCTGCT  
 GTGCCAACTCTCACTCGTGCCTGGGCCAATATCTGTCTACCTAGCGGAACCAACGTGCCACAGA  
 TGAACACCCACATGGTCACTCTTGAATGATCCGGACTCTTACATCTCTTGAACATTGAACTTTGA  
 TCTTGCTGAAATTGAAATTGGCTTGTATTGATTATTGACATATTGCTTTAAATTAATG  
 GATCATAAATGCTTATCTGATGGCTTCTGTTTGAATCTGGTTATATGCTGTATTGGTATT  
 ATCTATGAATTACTCTTAATGATCTATAAAATTACAATCTAAAGTAGGGGACCAAAACCAAATTG  
 GCGTGGGGCGGGCACCTAATTCTCCCTGGCG

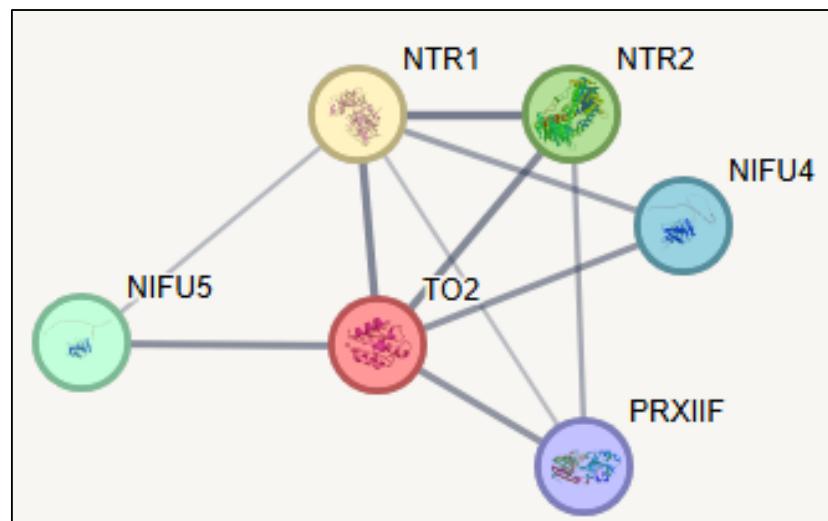
Sequence: AT1G31020.1 Premium Page

AT1G31020

#### Sequence

##### Sequence

001 ATGAAGAGTC AATGGTCTAA TTTTCATCA G ATGGGAGAG ACTCTTTCTT  
 051 AGCTGCTTCT ACTGTTAACG TTTCAAACGA ATTCAACTTC TTAAACACTT  
 101 CTCTCTTTAA TCGAAAGAGC TTCTGTTTG CAGAAAGAGA TCAGATCCAGC  
 151 TTGTAGTGT TGAAATCGGA AGCAGAGTTC AACAGTGAT TGATGAAAGC  
 201 TCGAGATGGA TCTTGGCAT CGTTTTCTA TTTCAGTGC GCATGGTGTG  
 251 GACCTTCAG GCTTATCTCT CCTGTGATAT TGAGGCTAG TAATAAATAT  
 301 CCTGATGTAACAACTATAA GGTGACATT GACGAGGGC GTCTATCAA  
 351 TGCTATTGGG AAAGTTAAATG TATCTGCTGT GCCAACACTG CAATTCTCA  
 401 AAGGTGGCGT GAAGGAAGCA GAGATTGTAG GCGTTGATGT GGTGAGGCTG  
 451 AAGGTGTCG TGGACACT CTACAAGTGA

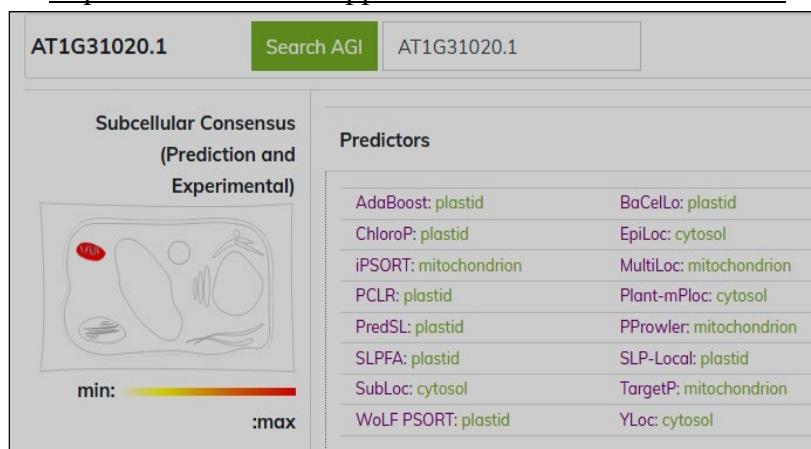

**Figure 2: Octahydrocurcumin-Associated Gene GW584119 in Safflower and the homologous AT1G31020 in *Arabidopsis***

### 3.6.2. Protein–Protein Interaction (PPI) Network Analysis

Protein–protein interaction analysis, conducted using the STRING database for the *Arabidopsis thaliana* homolog AT1G31020, revealed a tightly connected interaction network comprising proteins involved in abiotic stress response, redox regulation, and secondary metabolite–related metabolic processes (Figure 3). The predicted interaction partners included stress-responsive regulatory proteins and metabolic enzymes, suggesting that AT1G31020 functions as part of an integrated stress-induced regulatory module. The association of AT1G31020 with proteins linked to antioxidant defense and phenylpropanoid-related pathways supports its putative role in coordinating drought-induced secondary metabolite accumulation, including octahydrocurcumin-associated responses.

[https://string-](https://string-db.org/cgi/network?taskId=bAaxQXNrcY0A&sessionId=bIbwY9WuGfOF&allnodes=1)

[db.org/cgi/network?taskId=bAaxQXNrcY0A&sessionId=bIbwY9WuGfOF&allnodes=1](https://string-db.org/cgi/network?taskId=bAaxQXNrcY0A&sessionId=bIbwY9WuGfOF&allnodes=1)


**Figure 3: Protein – Proteins of AT1G31020**

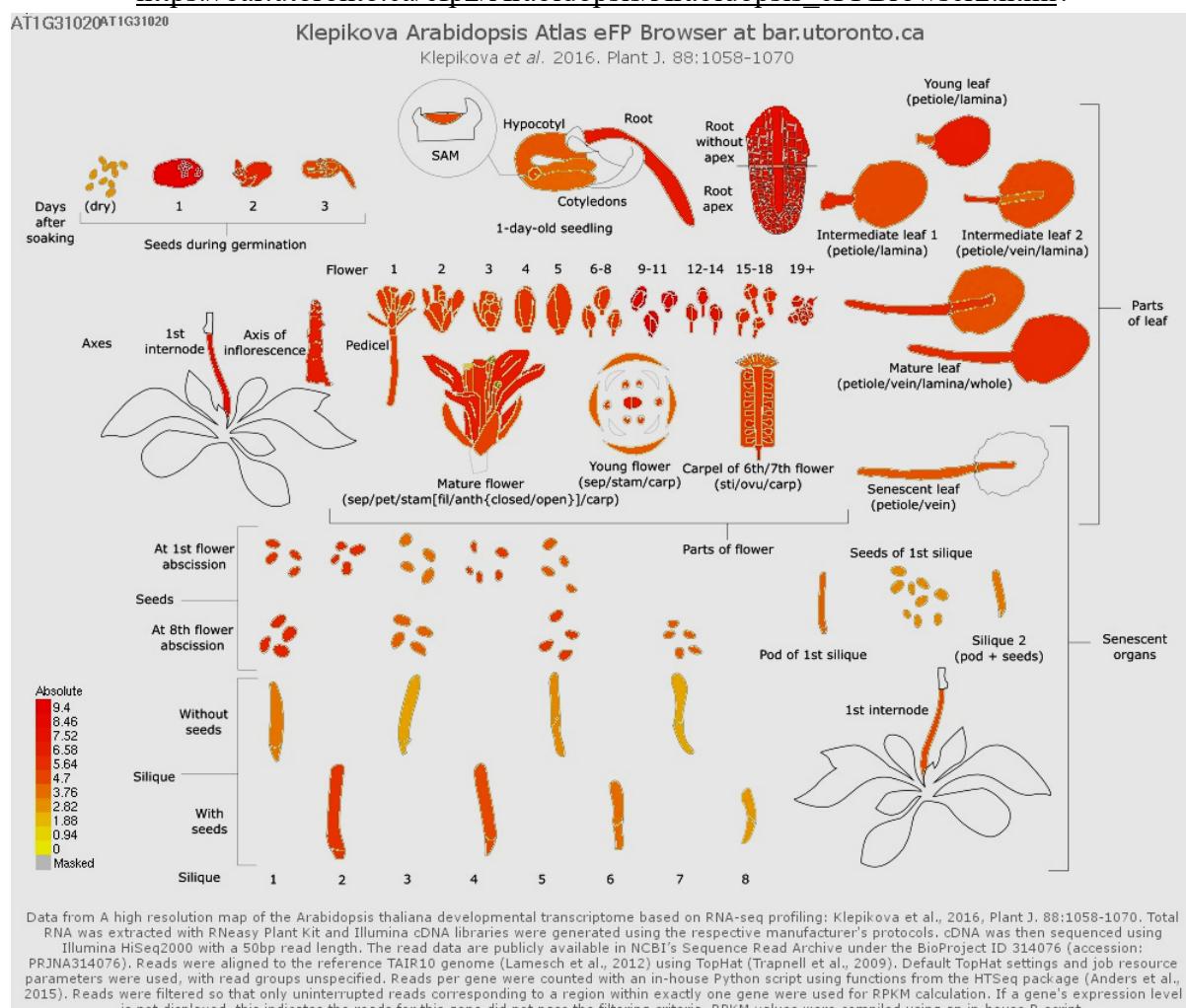
Collectively, NADPH-dependent Thioredoxin Reductase 1 (NTR1), NADPH-dependent Thioredoxin Reductase 2 (NTR2), Thioredoxin O2 (TO2), and Peroxiredoxin IIF (PRXIIF) form a coordinated thioredoxin–peroxiredoxin redox network that maintains cellular redox homeostasis and efficiently detoxifies reactive oxygen species generated during abiotic stresses such as drought. In parallel, Nitrogen Fixation U-like Protein 4 (NIFU4) and Nitrogen Fixation U-like Protein 5 (NIFU5) support iron–sulfur cluster assembly and metabolic enzyme stability, ensuring sustained energy metabolism and overall stress tolerance under adverse environmental conditions.

### 3.6.3. Subcellular Localization Prediction

Subcellular localization prediction consistently indicated that the GW584119-encoded protein is localized predominantly in metabolically active cellular compartments, such as the cytoplasm and associated organelles involved in biosynthetic and signaling processes. This localization supports its proposed regulatory role in stress-induced secondary metabolite pathways, including octahydrocurcumin biosynthesis or modulation (Figure 4).

<https://suba.live/suba-app/factsheet.html?id=AT1G31020>




**Figure 4: Subcellular localization prediction of AT1G31020**

Subcellular localization prediction for AT1G31020 shows a strong consensus toward plastid targeting, with multiple independent predictors (SUBA5) supporting plastid localization. Minor predictions to mitochondria and cytosol suggest possible dual targeting or dynamic relocalization under stress, consistent with roles in redox regulation and stress-responsive metabolism.

**3.6.4. Expression Analysis in *Arabidopsis thaliana***

Expression profiling of the homologous gene AT1G31020 in *Arabidopsis thaliana* revealed stress-responsive expression patterns, with significant upregulation under drought and related abiotic stress conditions. This expression trend mirrors the drought-induced accumulation of octahydrocurcumin detected in safflower leaves, providing cross-species validation of the gene's involvement in abiotic stress adaptation.

[https://bar.utoronto.ca/efp2/Arabidopsis/Arabidopsis\\_eFPBrowser2.html?](https://bar.utoronto.ca/efp2/Arabidopsis/Arabidopsis_eFPBrowser2.html?)

**Figure 5: Expression analysis of AT1G31020**

The eFP expression map shows that AT1G31020 is strongly expressed in roots, hypocotyls, and leaves, the primary organs involved in drought perception and response. High root and root-apex expression suggests a role in water uptake, stress signaling, and osmotic adjustment under limited moisture. Sustained expression in leaf tissues indicates involvement in redox balance, membrane stability, and transpiration control during dehydration. Expression across reproductive stages implies a conserved function in protecting growth and yield under drought stress.

#### 4. DISCUSSION

Abiotic stress-induced modulation of secondary metabolism is a key adaptive strategy enabling plants to survive under adverse environmental conditions. In the present study, an integrated physiological, biochemical, metabolomic, and bioinformatic approach was employed to elucidate drought-responsive secondary metabolite accumulation in safflower (*Carthamus tinctorius* L.), with particular emphasis on octahydrocurcumin and its associated gene GW584119. The results collectively demonstrate that drought stress triggers a coordinated metabolic and molecular reprogramming that enhances antioxidant capacity, membrane stability, and stress signaling, thereby reinforcing safflower's inherent drought tolerance<sup>19, 20</sup>. The higher extractive yield obtained from methanolic extracts of stress-treated plants indicates an overall enhancement of secondary metabolite biosynthesis under abiotic stress<sup>21</sup>. Methanol is known to efficiently solubilize phenolics, flavonoids, and other polar metabolites, and the increased yield strongly suggests stress-induced activation of specialized metabolic pathways<sup>22</sup>. Similar increases in extractive value under drought have been reported in medicinal plants such as peanut<sup>12</sup>, Pistacia<sup>13</sup>, and Achillea species<sup>14</sup>, where water deficit enhances the accumulation of stress-protective phytochemicals.

Preliminary phytochemical screening further corroborated this trend, revealing stronger qualitative reactions for phenolics, flavonoids, terpenoids, tannins, and saponins in drought-stressed samples. Phenolics and flavonoids are well-established non-enzymatic antioxidants that scavenge reactive oxygen species (ROS) generated during stress-induced oxidative bursts. The pronounced intensification of these classes under drought indicates metabolic reallocation toward redox buffering and cellular protection, consistent with earlier reports in safflower and other drought-tolerant crops. GC-MS profiling provided detailed insights into the biochemical basis of this response, revealing a diverse array of phenolic compounds, phenylpropanoid derivatives, fatty acids, sterols, terpenoids, and long-chain hydrocarbons. The identification of catechol, vanillic acid, sinapyl alcohol, stilbene derivatives, and methoxyphenols underscores strong activation of the phenylpropanoid pathway under drought stress. These compounds play crucial roles in ROS detoxification, lignification, and reinforcement of cell walls, thereby limiting oxidative and dehydration damage. Enhanced phenylpropanoid metabolism under drought has been widely reported as a hallmark of stress adaptation in plants<sup>15</sup>.

A striking feature of the metabolite profile was the abundance of fatty acids and lipid-derived molecules, including palmitic acid, octadecadienoic acid, glycerol esters, and phytol linoleate. The accumulation of these lipids is closely linked to membrane remodeling and signaling functions during stress<sup>23</sup>. Drought stress is known to activate phospholipase D (PLD), leading to the generation of phosphatidic acid (PA), a key lipid second messenger that regulates stress signaling, membrane dynamics, and downstream metabolic pathways<sup>24, 25</sup>. The increased levels of free fatty acids and lipid esters observed here strongly support PLD-mediated lipid turnover as a central mechanism of drought adaptation in safflower. The detection of sterols and triterpenoids such as stigmasterol,  $\gamma$ -sitosterol, epilupeol,  $\beta$ -amyrone, and betulinaldehyde further highlights the role of membrane stabilization in drought tolerance<sup>26</sup>. Sterols are known to modulate membrane fluidity and permeability, helping cells maintain integrity under dehydration stress. Increased sterol accumulation under drought has been associated with improved membrane resilience and stress tolerance in several plant species<sup>27</sup>.

Importantly, the identification of octahydrocurcumin represents a novel and significant finding. Octahydrocurcumin is a hydrogenated derivative of curcumin with enhanced antioxidant and free-radical-scavenging capacity<sup>28</sup>. Although curcuminoids are classically associated with *Curcuma* species, emerging evidence suggests that structurally related phenylpropanoid derivatives may accumulate in other plants under stress. Recent studies highlight octahydrocurcumin as a potent redox-modulating compound with superior stability and antioxidant efficiency compared to curcumin, supporting its functional relevance under oxidative stress conditions<sup>29</sup>. The enrichment of octahydrocurcumin observed in the present study strongly supports its involvement as a key metabolite in drought tolerance mechanisms in safflower, reinforcing its potential role as a biochemical marker of abiotic stress adaptation. Quantitative analyses further substantiated these observations, with significantly elevated total phenolic content (718 µg/g GAE) and total flavonoid content (567 µg/g QE) in stressed samples. These values reflect enhanced flux through the phenylpropanoid and flavonoid biosynthetic pathways, reinforcing the central role of secondary metabolites in drought-induced antioxidant defense. Similar increases in TPC and TFC under water deficit have been consistently reported across diverse crops and medicinal plants<sup>30</sup>. At the molecular level, bioinformatic characterization of the drought-responsive transcript GW584119 provides mechanistic support for the observed metabolite accumulation. Sequence analysis revealed strong homology with the *Arabidopsis* gene AT1G31020, indicating evolutionary conservation. Protein–protein interaction analysis using STRING demonstrated that AT1G31020 is embedded within a redox-regulatory network involving NTR1, NTR2, TO2, and PRXIIIF key components of the thioredoxin–peroxiredoxin system that maintains cellular redox homeostasis under stress. The association with NIFU4 and NIFU5 further links this gene to iron–sulfur cluster assembly and metabolic enzyme stability, processes essential for sustaining energy metabolism during stress<sup>31</sup>.

Subcellular localization predictions strongly favored plastid targeting, with minor mitochondrial and cytosolic localization, suggesting dynamic or dual targeting. Plastids are central hubs for redox regulation, fatty acid biosynthesis, and phenylpropanoid precursor generation, making them a logical site for coordinating stress-induced secondary metabolism. Such compartmentalization is increasingly recognized as a key feature of plant stress responses<sup>32</sup>. Finally, expression profiling of AT1G31020 in *Arabidopsis thaliana* revealed upregulation under drought stress, mirroring octahydrocurcumin accumulation in safflower. This cross-species concordance provides strong evidence that GW584119 participates in a conserved stress-responsive regulatory pathway linking redox control with secondary metabolite biosynthesis.

## 5. CONCLUSION

The present study demonstrates that drought stress in safflower induces a multifaceted adaptive response involving enhanced phenolic and lipid metabolism, membrane stabilization, and redox regulation. The integration of GC–MS metabolomics with bioinformatic and expression analyses highlights octahydrocurcumin as a novel and promising biochemical marker of abiotic stress tolerance. These findings provide a robust experimental–computational framework for future functional genomics studies and offer valuable targets for breeding and biotechnological strategies aimed at improving stress resilience and phytochemical value in safflower.

**Author contributions**

T. M. and N. H.-V conceived, designed research and wrote the manuscript. V. R and H. G.-S conducted experiments and analyzed data. All authors read and approved the manuscript.

**Conflicts of Interest**

The authors declare no conflicts of interest.

**6. REFERENCES**

1. Bahadori F, Bijanzadeh E, Naderi R, Seehausen ML, Weyl P. Planting date affects biochemical characteristics, assimilate remobilization, and yield of safflower under water stress. *Sci Rep.* 2025 May 2;15(1):15318. doi: 10.1038/s41598-025-98827-x. PMID: 40312504; PMCID: PMC12045968.
2. Rabbani Mohammad Taqi. 2026. “Safflower (*Carthamus tinctorius* L.): A Comprehensive Review of Its Diverse Applications and Recent Advances in Genetic Improvement”. *International Journal of Plant & Soil Science* 38 (1):308-37. <https://doi.org/10.9734/ijpss/2026/v38i15950>.
3. Fan L, Zhao HY, Xu M, Zhou L, Guo H, Han J, Wang BR, Guo DA. Qualitative evaluation and quantitative determination of 10 major active components in *Carthamus tinctorius* L. by high-performance liquid chromatography coupled with diode array detector. *J Chromatogr A.* 2009 Mar 13;1216(11):2063-70. doi: 10.1016/j.chroma.2008.03.046. Epub 2008 Mar 21. PMID: 18394634.
4. Farooqui T and Farooqui A. A (2019) Chapter 2 - Curcumin: Historical Background, Chemistry, Pharmacological Action, and Potential Therapeutic Value, Editor(s): Tahira Farooqui, Akhlaq A. Farooqui, Curcumin for Neurological and Psychiatric Disorders, Academic Press, Pages 23-44, ISBN 9780128154618, <https://doi.org/10.1016/B978-0-12-815461-8.00002-5>.
5. Ashraf K., Zaman Q. U., Liu Y., Gong S., Saleem A., Arshad M., Martuscelli M., Rebouh N. Y., Guo M., Mohsin A. (2026) Enhancing antioxidant and bioactive metabolite production in *Carthamus tinctorius* cell suspension culture through nano-elicitor mediated elicitation *RSC Adv.*, 2026, 16, 6733–6746
6. Tohidi B, Rahimmalek M, Arzani A (2017) Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. *Food Chem.* 220:153-161.
7. Sajedi NA, Ferasat M, Mirzakhani M, Boojar MM. Impact of water deficit stress on biochemical characteristics of safflower cultivars. *Physiol Mol Biol Plants.* 2012 Oct;18(4):323-9. doi: 10.1007/s12298-012-0129-3. PMID: 24082494; PMCID: PMC3550555.
8. Thippeswamy M, Rajasreelatha V, Haleshi C. and Chinta (2021) Sudhakar Modulation of Cell Components and Specific Isoforms of Antioxidant Enzymes in Safflower Under Water Stress and Recovery. *Journal of Stress Physiology & Biochemistry*, 17(1), 94-105 ISSN 1997-0838
9. Tügen A, Buruleanu CL. The Role of Plant-Derived Bioactive Compounds in Mitigating Oxidative Stress. *Foods.* 2025 Dec 30;15(1):108. doi: 10.3390/foods15010108. PMID: 41517174; PMCID: PMC12785908.
10. Salem N, Msaada K, Dhifi W, Sriti J, Mejri H, Limam F, Marzouk B. Effect of drought

on safflower natural dyes and their biological activities. EXCLI J. 2014 Jan 28;13:1-18. PMID: 26417239; PMCID: PMC4464500.

11. Yeloojeh, A.K., Saeidi, G., & Sabzalian, M.R. (2020). Drought stress improves the composition of secondary metabolites in safflower flower at the expense of reduction in seed yield and oil content. Industrial Crops and Products, 154, 112496.

12. Aninbon C, Jogloy S, Vorasoot N, Patanothai A, Nuchadomrong S, Senawong T. Effect of end of season water deficit on phenolic compounds in peanut genotypes with different levels of resistance to drought. Food Chem. 2016 Apr 1;196:123-9. doi: 10.1016/j.foodchem.2015.09.022. Epub 2015 Sep 8. PMID: 26593473.

13. Rigane G, Ghazghazi H, Aouadhi C, Ben Salem R, Nasr Z. Phenolic content, antioxidant capacity and antimicrobial activity of leaf extracts from *Pistacia atlantica*. Nat Prod Res. 2017 Mar;31(6):696-699. doi: 10.1080/14786419.2016.1212035. Epub 2016 Aug 3. PMID: 27486691.

14. Gharibi, Shima & Sayed-Tabatabaei, Badraldin & Saeidi, Ghodratollah & Goli, Sayed & Talebi, Majid. (2013). Total phenolic content and antioxidant activity of three Iranian endemic Achillea species. Industrial Crops and Products. 50. 154-158. 10.1016/j.indcrop.2013.07.038.

15. Ahamed S., Shaliha S., Swarnakumari N., Bellie A., Gurudevan T., Gopinathan S., Nallusamy S., Sakthivel S. (2025). GC-MS based metabolite profiling and biochemical characterization of *Pochonia chlamydosporia* with pharmaceutical and industrial implications. Annals of Phytomedicine An International Journal. 14. 594-603. 10.54085/ap.2025.14.2.58.

16. Li J, Wang R, Chen C, Huang X, Xian B, Lv T, Ren C, Wu Q, Wen F, Yan J, Pei J. Effects of drying processes on the chemical and physical properties of safflower: Towards a multidimensional quality evaluation model. PLoS One. 2026 Jan 2;21(1):e0339180. doi: 10.1371/journal.pone.0339180. PMID: 41481617; PMCID: PMC12758763.

17. Deekti K, Umadevi P, Vijayalakshmi G, Vinod polarao B, Antimicrobial Activity and Phytochemical Analysis of *Morinda tinctoria* Roxb. Leaf Extracts, Asian Pacific Journal of Tropical Biomedicine, Volume 2, Issue 3, Supplement, 2012, Pages S1440-S1442, ISSN 2221-1691, [https://doi.org/10.1016/S2221-1691\(12\)60433-X](https://doi.org/10.1016/S2221-1691(12)60433-X).

18. Park Y-S, Jung S-T, Kang S-G, Heo BK, Arancibia-Avila P, Toledo F, Drzewiecki J, Namiesnik J, Gorinstein S. (2008) Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem. 107:640–648. doi: 10.1016/j.foodchem.2007.08.070.

19. Thippeswamy M, Sivakumar M, Sudhakarbabu O, Chandraobul Reddy P, Veeranagamallaiah G, Pandurangaiah M, Ramya M, Nareshkumar A, Kirankumar T and Chinta Sudhakar (2013) Generation and analysis of drought stressed subtracted expressed sequence tags from safflower (*Carthamus tinctorius* L.). Plant Growth Regul 69, 29–41. <https://doi.org/10.1007/s10725-012-9744-9>

20. Thippeswamy, M., Chandraobulreddy, P., Sinilal, B. et al. Proline accumulation and the expression of  $\Delta 1$ -pyrroline-5-carboxylate synthetase in two safflower cultivars. Biol Plant 54, 386–390 (2010). <https://doi.org/10.1007/s10535-010-0070-7>

21. Muthusamy M and Lee SI (2024) Abiotic stress-induced secondary metabolite production in Brassica: opportunities and challenges. Front. Plant Sci. 14:1323085. doi: 10.3389/fpls.2023.1323085

22. Zhang Y, Cai P, Cheng G, Zhang Y (2022) A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. *Natural Product Communications*. 17(1). doi:10.1177/1934578X211069721

23. Solano L, Keshet U, Reinschmidt A, Chavez Y, Hulsy WD, Fiehn O, Nikolaidis N. Dynamic Lipidome Reorganization in Response to Heat Shock Stress. *bioRxiv* [Preprint]. 2025 Feb 23:2025.02.18.638884. doi: 10.1101/2025.02.18.638884. Update in: *Int J Mol Sci.* 2025 Mar 21;26(7):2843. doi: 10.3390/ijms26072843. PMID: 40027697; PMCID: PMC11870493.

24. Sang Y, Cui D, Wang X. Phospholipase D and phosphatidic acid-mediated generation of superoxide in *Arabidopsis*. *Plant Physiol.* 2001 Aug;126(4):1449-58. doi: 10.1104/pp.126.4.1449. PMID: 11500544; PMCID: PMC117145.

25. Karippadakam S., Achary V. M. M., Vishnudasan D., Nair B. K. G., Parmar H., Prakash G., Reddy M. K. CRISPR mediated inactivation of OsPLD $\beta$ 1 phospholipase enhances drought tolerance by upregulating stress-related genes and antioxidant enzymes in rice, *Plant Physiology and Biochemistry*, 2026, 111071, ISSN 0981-9428, <https://doi.org/10.1016/j.plaphy.2026.111071>.

26. Valitova J, Renkova A, Beckett R, Minibayeva F. Stigmasterol: An Enigmatic Plant Stress Sterol with Versatile Functions. *Int J Mol Sci.* 2024 Jul 25;25(15):8122. doi: 10.3390/ijms25158122. PMID: 39125690; PMCID: PMC11311414.

27. Rogowska, A., Szakiel, A. The role of sterols in plant response to abiotic stress. *Phytochem Rev* 19, 1525–1538 (2020). <https://doi.org/10.1007/s11101-020-09708-2>

28. Tofan, A., Gurkan, E., Arikán-Abdulveli, B., Balci, M., Yıldıztugay, E. and Ozfidan-Konakci, C. (2025), Curcumin, a Secondary Metabolite, Activates the Defense System by Regulating Water Status, PSII Photochemistry, and Antioxidant Capacity in *Lactuca sativa* Exposed to Lead and/or Arsenic Stresses. *Food Energy Secur*, 14: e70027. <https://doi.org/10.1002/fes3.70027>

29. Mohagheghian, B., Saeidi, G. & Arzani, A. Phenolic compounds, antioxidant enzymes, and oxidative stress in barley (*Hordeum vulgare* L.) genotypes under field drought-stress conditions. *BMC Plant Biol* 25, 709 (2025). <https://doi.org/10.1186/s12870-025-06750-0>

30. Ramaroson ML, Koutouan C, Helesbeux JJ, Le Clerc V, Hamama L, Geoffriau E, Briard M. Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. *Molecules*. 2022 Nov 30;27(23):8371. doi: 10.3390/molecules27238371. PMID: 36500459; PMCID: PMC9735708.

31. Sevilla, Francisca & Camejo, Daymi & Ortiz-Espín, Ana María & Calderón, Aingeru & Lázaro, J & Jiménez, Ana. (2015). The thioredoxin/peroxiredoxin/sulfiredoxin system: Current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. *Journal of experimental botany*. 66. 10.1093/jxb/erv146.

32. Gould SB, Magiera J, García García C, Raval PK. Reliability of plastid and mitochondrial localisation prediction declines rapidly with the evolutionary distance to the training set increasing. *PLoS Comput Biol.* 2024 Nov 11;20(11):e1012575. doi:10.1371/journal.pcbi.1012575. PMID: 39527633; PMCID: PMC11581415.