

Targeting Inflammatory Pathways in Rheumatoid Arthritis Therapy

Esha Vishwakarma¹, Aashita sakore¹, Rahul Singh², Priyanka Dohre², Vinay Sagar Verma^{3*}

¹Datta Meghe College of Pharmacy DMIHER (DU), Sawangi (Meghe), Wardha, Maharashtra, 442107, India

²M J College, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India

³Kamla Institute of Pharmaceutical Sciences, Junwani, Bhilai, Durg, Chhattisgarh, 490020, India

*Corresponding Author E-mail: vinaysagarverma@gmail.com

ABSTRACT

Rheumatoid arthritis (RA), is a chronic autoimmune disease characterized by chronic inflammation of the synovium, cartilage and bone erosion and is mediated in large part by maladaptive inflammatory mechanisms. The preclinical analyses on animal models such as collagen induced arthritis (CIA), adjuvant induced arthritis (AIA) and transgenic mice on TNF have given necessary knowledge on the molecular basis of RA pathogenesis and treatment protocols. This review is a synthesis of the existing evidence on the use of these models in order to target key pro-inflammatory cytokines (TNF- α , IL- 6, IL- 1) and intracellular signaling cascades (JAK -STAT, NF- -00, MAPK, PI3K/Akt) to reduce joint inflammation, osteoclast activity, and tissue damage. Also, the use of emerging strategies like nanoparticle-based drug delivery delivers a tissue specific target, drug stability and less systemic toxicity. These preclinical studies are critically examined in terms of strengths, limitations and translational potential, combination and multi-target studies are proposed to counteract redundancy in pathways, and gaps in future studies are highlighted. At last, these results indicate the critical role of animal models in informing the design of new therapeutic interventions that are more effective and safer to use in the treatment of RA.

Key Words:

Rheumatoid Arthritis, Inflammatory Pathways, Cytokine Inhibition, TNF- α , IL-6, IL-1, JAK-STAT Signaling, NF-Kb, MAPK, PI3K/Akt, Animal Models.

Article History:

Received on Sep 13, 2025

Revised on Oct 16, 2025

Accepted on Nov 14, 2025

Published on Dec 23, 2025

DOI: <https://doi.org/10.64062/JPGBM.Vol1.Issue6.2>

1. INTRODUCTION

Rheumatoid arthritis (RA) is a debilitating type of autoimmune disease that is characterized by chronic synovial inflammation, destruction of the joints, and systemic expression. At its core, there are dysregulated inflammatory pathways, such as cytokine interrelationships, intracellular signaling cascades, which mediate cartilage erosion, bone erosion, and poor joint functionality¹. Even with the progress in the treatment of biologics and disease-modifying antirheumatic drugs (DMARDs), the number of patients who do not respond or develop resistance to treatment is quite high, and new therapeutic approaches are urgently required. Animal models have played a crucial role in the dissolution of the molecular mechanism of RA and testing the effectiveness of the targeted interventions². The review concentrates on preclinical support of targeting inflammatory pathways in RA treatment, and the potential of

cytokine blockage, intracellular signaling control, and nanoparticle-based novel methods of disease management are demonstrated.

1.1. Background Information and Context

Rheumatoid arthritis (RA) is an autoimmune disease that is chronic and systemic, and occurs in about 1% of the world population³. It is mostly focused on the Synovial joints that cause chronic inflammatory reaction, cartilages degradation, bone erosion and, finally, severe functional handicapping. RA has a complicated pathogenesis which entails a complex interaction between genetic predisposition, environmental factors and malfunction in the immune system⁴. Chronic inflammation is central to the development of a disease mediated by pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF- alpha), interleukin-6 (IL-6), interleukin-1 (IL-1), and intracellular signaling pathways, such as JAK-STAT and NF- κ B. These paupers are stimulators of synovial hyperplasia, infiltration of leucocytes, angiogenesis, and osteoclast activation, all of which play a role in the destruction of the joint⁵. There have been many animal models used to recreate human RA pathology and test the feasibility of therapies in a controlled preclinical model, including collagen-induced arthritis (CIA), adjuvant-induced arthritis (AIA) and TNF-transgenic mice.

1.2. Objectives of the Review

The review aims to:

- To examine cytokine-targeted interventions, including TNF- α , IL-6, and IL-1 blockade, in animal models.
- To evaluate the modulation of intracellular signaling pathways such as JAK-STAT, NF- κ B, MAPK, and PI3K/Akt.
- To explore emerging therapeutic strategies, including nanoparticle-based drug delivery systems, and their efficacy in reducing inflammation and joint damage.
- To identify limitations, translational gaps, and future directions for preclinical research to support the development of effective RA therapies.

1.3. Importance of the Topic

RA is a debilitating disorder that has a high personal and societal cost, although there are biologic and disease-modifying antirheumatic drugs (DMARDs). The knowledge and successful targeting of the inflammatory pathways are also required to promote better therapeutic outcomes, reduce the destruction of the joints, and improve the quality of life of the patients⁶. Preclinical research is essential in the process of understanding disease mechanisms, novel interventions, and clinical effectiveness prediction using animal models. This study offers a useful contribution to the existing body of knowledge on the molecular basis of RA, promising therapeutic targets, and preconditions the translation research directed at the creation of safer, more efficient and specific treatment methods⁷.

2. CYTOKINE-TARGETED INTERVENTIONS

Small signaling proteins that are secreted by immune and stromal cells coordinate inflammation and immune cell recruitment in addition to tissue destruction in rheumatoid arthritis (RA)⁸. Animal models' Preclinical experiments have been helpful in further defining the actions of cytokines in the development of the disease process and also in assessing future

therapeutic targets in the preclinical studies in animal models, which include collagen-induced arthritis (CIA), adjuvant induced arthritis (AIA) and TNF-transgenic mice⁹. Tumor necrosis factor-alpha (TNF- α), interleukin-6 (IL- 6), and interleukin- 1 (IL- 1) are the most researched ones, as they are at the heart of mediating synovial inflammation, angiogenesis, pannus formation, and bone erosion.

2.1. TNF- α Inhibition

TNF- α is a global controller of inflammation, and activated macrophages, dendritic cells, and synovial fibroblasts are the main producers of TNF- α . It triggers the production of adhesion molecules, chemokines, and matrix metalloproteinases (MMPs) resulting in the leukocyte inflammation and degradation of the joints.

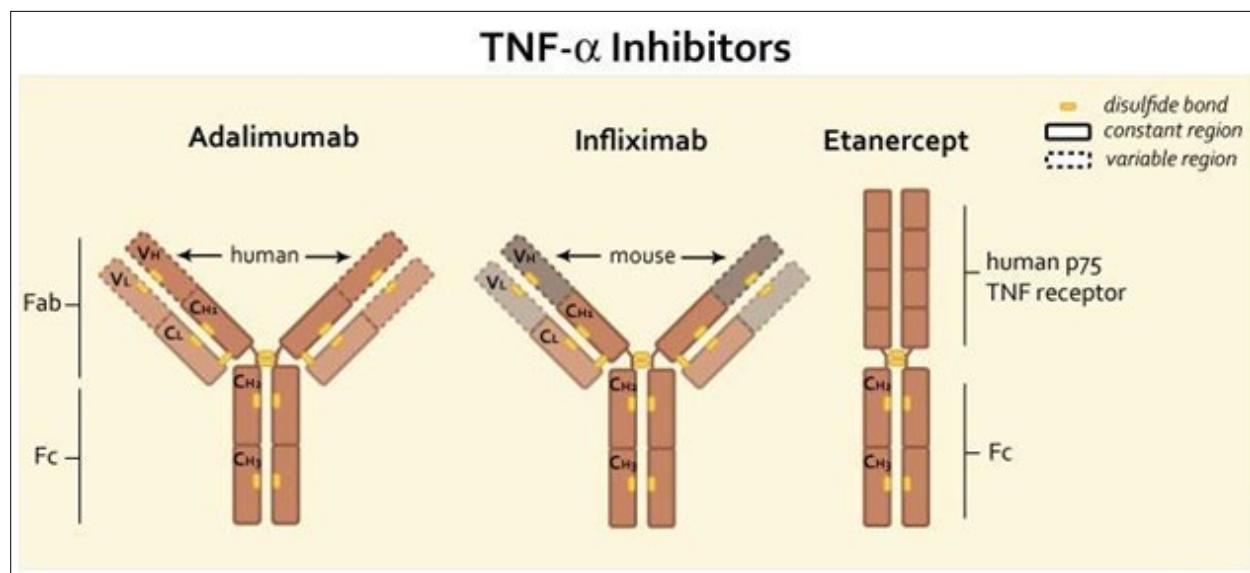


Figure 1: TNF- α Inhibition¹⁰

Evidence from Animal Models

- In CIA mice, anti-TNF mABs or soluble TNF receptors (e.g. etanercept analogs) treatment has shown to reduce swelling of the paw, synovial infiltration and joint destruction dramatically. Histopathological analysis revealed that there was a significant reduction in the pannus formation and osteoclast activity.
- In TNF-transgenic mice, which are spontaneously induced to develop arthritis, genetic or pharmacological inhibition of TNF resulted in the normalization of joint histology, systemic inflammation and mortality was prevented in early stages of the disease.
- Interestingly, the timing of TNF inhibitor is important. Research has shown that TNF blockade is better performed at the initial stage of inflammation, before the cascade of cytokine activation and bone erosion. Contrastingly, in late or established disease, TNF inhibition partially worked, indicating that there are other cytokines that maintain inflammation when the disease is already chronic.

Mechanistic Insights

Animal research demonstrates that TNF- α does not only provide a direct response to the synovial cells, but also stimulates downstream effects of IL-1 and IL-6 to form a pro-inflammatory network¹¹. TNF also stimulates RANKL expression, which is a stimulator of

osteoclast differentiation and bone resorption. Therefore, TNF is an activator and mediator of inflammatory reactions.

2.2. IL-6 Pathway

IL-6 is a pleiotropic cytokine, which is involved in the response during acute phases, B-cell activation, and Th17 differentiation. IL-6 plays a role in both systemic (anemia, fatigue) and local inflammation of joints in RA¹².

Evidence from Animal Models

- IL-6 receptor antibody (murine analogs of tocilizumab) caused a decrease in paw swelling, synovial hyperplasia, and cartilage degradation in CIA rodents. The results of bone mineral density analysis showed that there is a considerable defense against the erosion.
- IL-6 blockade also decreased serum acute-phase protein concentrations of C-reactive protein (CRP), which was also replicated in clinical models of human disease but was proven only in preclinical studies here¹³.
- AIA rat models indicated that the IL-6 blockage reduced angiogenesis in the synovial tissues indicating a dual function in the response of inflammation and vascular remodeling.

Mechanistic Insights

Animal literature demonstrates that IL-6 can also proceed via classical signaling (membrane-bound IL-6R), and trans-signaling (soluble IL-6R), and that trans-signaling has been specifically involved in chronic synovitis. Th17/Treg imbalance in rodents was inhibited by IL-6, which suggests that IL-6 has a part in adaptive immunity.

2.3. IL-1 Pathway

The other pro-inflammatory cytokine that is the centre of the joint pathology is IL-1, especially IL-1b. Activated macrophages and neutrophils are the major secretors of it and it highly encourages cartilage break down and pannus development¹⁴.

Evidence from Animal Models

- The IL-1 receptor antagonists (IL-1Ra) in CIA rat models reduced the joint inflammation, pannus invasion and cartilage erosion significantly. Histology revealed a decrease in the number of osteoclasts and activity of MMP.
- This was done through mouse models of IL-1 overexpression in which unregulated production of cytokines resulted in aggressive erosion of the joints, which validates the destructive property of IL-1. Inhibition of IL-1 in these models reinstated integrity in the joints and decreased the severity of the disease¹⁵.
- Long-term rodent studies of arthritis the frequency of disease relapse with chronic IL-1 inhibition was reduced, compensatory cytokines (TNF- α , IL-6) upregulated, and these studies indicated the redundancy and cross-regulation of inflammatory pathways.

Mechanistic Insights

IL-1 stimulates the synthesis of prostaglandin, nitric oxide and degradative enzymes, which directly cause damage to cartilage matrix. It also induces the growth of fibroblasts of the

synovium which enhances the growth of pannus. Animal experiments implicate IL-1 and TNF to work together and dual inhibition is more effective than single blockade.

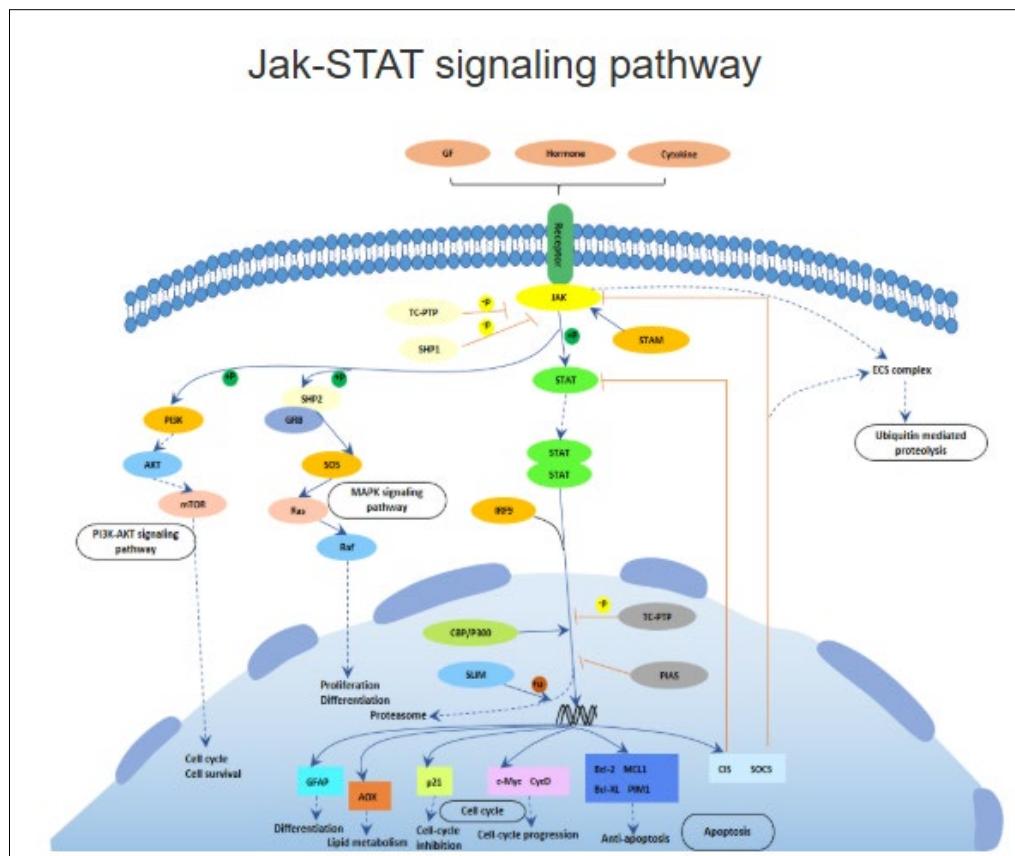
2.4. Comparative Insights

Cytokine blockade is a pillar in preclinical studies of rheumatoid arthritis treatments, which involve major mediators of inflammatory processes within the synovia, osteoclast genesis, and cartilage degeneration, including TNF- α , IL-6, as well as IL-1¹⁶. The comparative analysis of animal models shows that there is a difference in efficacy, strengths, and limitations of such targets.

Table 1: Comparative Insights on Cytokine Blockade in Animal Models of RA¹⁷

Cytokine Target	Key Role in Pathogenesis	Effectiveness in Animal Models	Strengths	Limitations
TNF-α	Central upstream regulator; promotes IL-1 and IL-6 production, synovial inflammation, osteoclast genesis	Highly effective in early disease phase (CIA mice, TNF-transgenic models)	Reduces joint swelling, synovial infiltration, and prevents early erosion	Limited efficacy in late/established disease; compensatory cytokines may sustain inflammation
IL-6	Drives Th17 differentiation, systemic inflammation, angiogenesis	Effective in CIA and AIA models	Reduces systemic inflammation, protects bone density, restores immune balance	Pathway redundancy may limit long-term control
IL-1	Promotes cartilage degradation, pannus formation, osteoclast activity	Effective in CIA and IL-1 overexpression models	Strong protection against cartilage and bone erosion	Long-term inhibition activates TNF- α and IL-6 (compensatory pathways)

Initially, TNF- α blockade is very effective at the initial stages of the disease, as it reduces the joint swelling and synovial infiltration, but the results are not so effective in the advanced disease as there is a counteracting effect of other cytokines, as summarized in Table 1. The inhibition of IL-6 shows excellent effectiveness in controlling the systematic inflammation and the Th17-mediated processes, and the inhibition of IL-1 offers an excellent protection against cartilage and bone erosion but can induce the compensatory increase of TNF-alpha and IL-6. This comparative summary (see Table 1) gives a framework of the difference in effects of cytokine-targeted therapies in preclinical RA models.


3. INTRACELLULAR SIGNALING PATHWAYS

The intracellular signaling pathways play a very important role in mediating inflammatory responses in rheumatoid arthritis (RA). In contrast to extracellular cytokines, these pathways represent signal transduction centers that consider various upstream inflammatory signals and

coordinate cellular responses, such as the production of cytokines, immune cells differentiation, and tissue remodeling¹⁸. The NF- κ B and JAK-STAT pathways are among them and are highly researched in animal models and hold potential as therapeutic targets.

3.1. JAK-STAT Signaling

The Janus kinase (JAK)- signal transducer and activator of transcription (STAT) pathway transduce signals of numerous different cytokine receptors, such as IL-6, IL-23, and IFN-gamma. JAK-STAT dysregulation is involved in Th17/Treg imbalance, synovial hyperplasia and systemic inflammation in RA.

Figure 2: JAK-STAT Signaling Pathways¹⁹

Evidence from Animal Models

- CIA Mice:** Selective JAK inhibitors, especially JAK3 inhibitors caused a considerable decrease in paw swelling, synovial erosion and erosion of cartilage. The histopathological study revealed a decrease in leukocytes infiltration and pannus.
- AIA Rats:** There was a decrease in systemic inflammatory markers, such as levels of IL-6 and TNF- α , and a reduction in splenomegaly, which is indicative of the larger immunomodulatory effects²⁰.
- Th17 Differentiation:** The animal research revealed that JAK inhibition prevents the differentiation of Th17 cells and restores the activity of regulatory T-cells (Treg), which compensates the immune imbalance in arthritic joints.

Mechanistic Insights

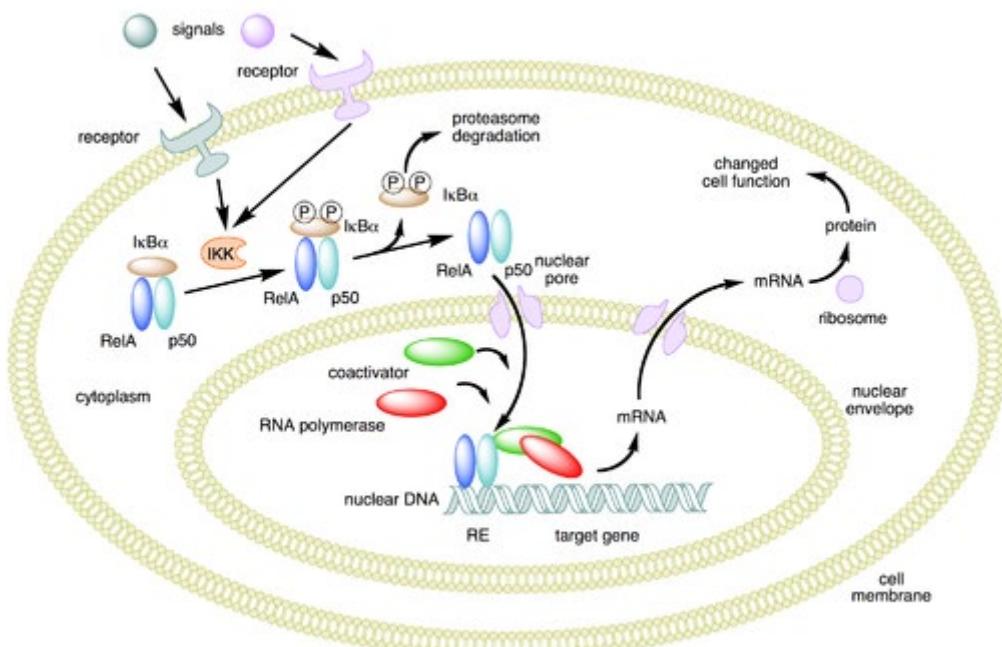

JAK inhibitors suppress the phosphorylation of STAT proteins to inhibit the expression of pro-inflammatory genes. JAK3-selective inhibitors were found to be more effective in reducing joint inflammation in animal models than pan-JAK inhibitors, presumably because they inhibit lymphocyte-mediated inflammation but no other physiological processes.

Table 2: JAK-STAT Inhibition in Animal Models of RA²¹

Animal Model	JAK Inhibitor	Targeted JAK Isoform	Key Findings
CIA mice	Tofacitinib analog	JAK1/3	Reduced paw swelling, synovial infiltration, and cartilage damage; decreased Th17 differentiation
AIA rats	JAK3 inhibitor	JAK3	Alleviated synovial inflammation, reduced splenomegaly, normalized cytokine levels
TNF-transgenic mice	Pan-JAK inhibitor	JAK1/2/3	Decreased serum IL-6 and TNF- α ; mild protection against bone erosion

3.2. NF- κ B Pathway

NF-kappa B (NF- κ B) pathway is a significant transcription factor cascade that controls the genes relating to inflammation, cell survival and tissue degeneration. It is triggered by various stimuli, such as TNF-alpha, IL-1 and toll-like receptor (TLR) signaling. NF- κ B enhances pro-inflammatory cytokines, matrix metalloproteinases (MMPs), and RANKL expression in rheumatoid arthritis (RA), and thus, the inflammation of the synovium and destruction of the joint are promoted.

Figure 3: Mechanism of NF- κ B Activation in RA²²

NF- κ B complex is a heterodimer of p50 and RelA as the canonical form and is inactive in the cytosol when under the inhibitory influence of the I κ B α protein. Membrane receptors upon stimulation with extracellular signals activate I κ B kinase (IKK). IKK phosphorylates I κ B α , and results in ubiquitination of I κ B α , which is then degraded by the proteasome²³. This liberates NF- κ B in order to translocate into the nucleus. After being localized to the nucleus, NF- κ B interacts with particular DNA response elements (REs), which assembles coactivators and RNA polymerase to activate target genes transcription. The mRNA formed is translated into proteins, which regulate cellular activities and result in inflammation and destruction of joints in RA.

Evidence from Animal Models

- **CIA Mice:** NF- κ B pharmacological inhibition reduced macrophage and neutrophil infiltration, cytokine release in the synovium, and cartilage erosion.
- **AIA Rats:** NF- κ B inhibition in synovial fibroblasts reduced pannus and osteoclast recruitment, which showed tissue-specific therapeutic efficacies.

The role of the NF- κ B pathway in coordinated local joint destruction was highlighted by the finding that genetic knockdown of NF- κ B subunits (p65 or IKK2) in arthritic mice inhibited subsequent synovitis and bone destruction.

Mechanistic Insights

NF- κ B is a point of intersection of various inflammatory stimuli²⁴. Its suppression in animal models disturbs both the innate and adaptive immune systems and decreases the expression of MMP and the osteoclast genesis. Notably, selective targeting in the synovial fibroblasts indicates that there is the option of local treatment which can reduce systemic immunosuppression.

Table 3: NF- κ B Inhibition in Animal Models of RA²⁵

Animal Model	NF- κ B Inhibitor / Approach	Targeted Molecule	Key Findings
CIA mice	Pharmacological NF- κ B inhibitor	IKK β / p65	Reduced macrophage/neutrophil infiltration; protected cartilage
AIA rats	Synovial fibroblast-specific NF- κ B knockdown	p65	Decreased pannus formation; reduced osteoclast recruitment
TNF-transgenic mice	Genetic knockout of p65	NF- κ B subunit	Reduced synovitis and bone erosion

3.3. Comparative Insights

- JAK-STAT inhibition mainly interferes with adaptive immune reactions, inhibits the variousiation of Th17, and alters systemic cytokines. It works especially well in models where the immune-cells cause inflammation.

- NF- κ B inhibition has been shown to inhibit both innate and adaptive signaling pathways directly inhibiting synovial inflammation and tissue damage. Tissue-based methods seem to be good to reduce systemic immunosuppression.
- Collectively, these pathways are complementary mechanisms of controlling intracellular signaling in RA. Combination strategies could also have increased efficacy by simultaneously suppressing cytokine signaling as well as transcriptional activation.

4. EMERGING THERAPEUTIC APPROACHES

Rheumatoid arthritis (RA) is a multifactorial autoimmune disease, which is associated with the presence of chronic synovial inflammation, joint destruction, and systemic manifestations. Classical therapies are aimed at cytokines or intracellular signaling pathways, however, recent preclinical studies have identified new signaling cascades and new drug delivery platforms. Animal research has been used to test these methods and has provided evidence of proof-of-concept that could be used to guide future translational research²⁶. These are the inhibitors of the MAPK and PI3K/Akt pathways and nanoparticle-based delivery systems, which are becoming promising approaches to improve the efficacy and decreased toxicity of the systemic effect.

4.1. MAPK and PI3K/Akt Pathways

Several pathological events in RA, including cytokine secretion, proliferation of the synovial fibroblast, angiogenesis and bone resorption by osteoclasts are coordinated through intracellular signaling pathways like mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt). The involvement of these pathways in dysregulation in the synovium is involved in the progressive destruction of tissues that is seen in RA.

➤ MAPK Pathway

Role in RA Pathogenesis: Pro-inflammatory cytokines (TNF- α , IL-1B, IL-6) and cellular stress activate MAPKs (p38, ERK, JNK)²⁷. They control the activity of transcription factors including ATF2, CREB and c-Jun which precipitate the expression of cytokines, matrix metalloproteinases (MMPs), and adhesion molecules that contribute to synovial inflammation and joint destruction.

Animal Evidence:

- **CIA Rats:** Selective p38 inhibitors led to decreasing of synovial TNF- 6, IL-6, leukocyte infiltration, and cartilage erosion. Less pannus and intact joint architecture was observed using histological analyses.
- **TNF-Transgenic Mice:** ERK and JNK inhibition reduced the proliferation of synovial fibroblasts and inhibited MMP activity, which reduced tissue damage.

Mechanistic Insights: p38 inhibition suppresses downstream transcription factor expression through phosphorylation and inhibits the expression of inflammatory mediators. The blockade of ERK/JNK also inhibits fibroblast growth and angiogenic signaling with an emphasis on a multi-dimensional anti-inflammatory phenotype.

➤ PI3K/Akt Pathway

Role in RA Pathogenesis: PI3K/Akt signaling enhances the survival and proliferation of synovial fibroblasts, angiogenesis in the pannus tissue, and osteoclast differentiation through

the RANKL signaling. Excessive stimulation of this pathway leads to hyperplasia of the synovium, bone erosion and deformity of the joints²⁸.

Animal Evidence:

- **CIA Mice and TNF-transgenic Models:** PI3K or Akt pharmacological inhibition of the synovial angiogenesis, the osteoclast-mediated bone resorption, and the fibroblast growth.
- **Histological Outcomes:** Compared to untreated controls Treated animals had less pannus formation, cartilage preservation and inflammatory infiltration.

Mechanistic Insights: PI3K/Akt inhibitors disrupt a series of pathological events at once, indicating the dual therapeutic impact of the former on anti-inflammatory and preservative effects on the joint.

4.2. Nanoparticle-Based Delivery Systems

Nanotechnology has become a novel strategy in enhancing drug targeting, stability and safety in the treatment of RA. Conventional systemic therapies are normally characterized by fast degradation, lack of bioavailability and off-target effects. Nanoparticle Systems based on nanoparticles improve therapeutic delivery accuracy, especially to inflamed synovial tissues, making the most of the effort and the least of systemic toxicity.

Animal Studies Evidence

- **Liposomal siRNA Delivery:** Liposomes containing siRNA against TNF- alpha or IL-6: In CIA mouse models:
 - Maintained prolonged circulation and stability of siRNA
 - Reduced paw swelling and synovial inflammation
 - Downregulated local cytokine expression without systemic immunosuppression
- **Polymeric Nanoparticles:** Biodegradable polymers-loaded with methotrexate or dexamethasone preferentially accumulate in the inflamed joints in rat models Increased therapeutic efficacy and decreased hepatotoxicity and off-target side effects.
- **Key Nanoparticles:** Folate-conjugated or antibody-conjugated Nanoparticles Can selectively attack activated synovial fibroblasts or macrophages Can deliver drugs to specific pathology Provided delivery of drugs to specific pathology, decreased joint inflammation, and better drug retention at the site of pathology.

Mechanistic Insights

Nanoparticle-mediated therapy leverages:

- **Enhanced Permeability and Retention (EPR):** Due to inflamed joints, nanoparticles are preferentially deposited because of leaky vasculature.
- **Controlled Release:** Continuous release of encapsulated drugs increases the duration of therapy and reduces the dosage frequency.
- **Combination Therapy Potential:** Nanoparticles have the potential to deliver small molecules and nucleic acids co-deliverable together to inhibit two or more inflammatory pathways simultaneously²⁹.

The new therapeutic strategies in rheumatoid arthritis (RA) have been aimed at targeting intracellular signaling pathways as well as improving drug delivery precision. Particularly, MAPK (p38, ERK, JNK) and PI3K/Akt inhibition has demonstrated significant anti-inflammatory and joint-protective efficiencies in the animal models and nanoparticle-based delivery systems enhance tissue specificity, extend drug circulation and decrease systemic toxicity. There is preclinical evidence that these strategies are effective in the inhibition of cytokines production, proliferation of synovial fibroblasts, angiogenesis, and bone erosion by osteoclasts. These therapeutic approaches, their pathways of action, animal models, methods, major findings, and references have been summarized in Table 4.

Table 4: Emerging Therapeutic Approaches Targeting Inflammatory Pathways in Animal Models of Rheumatoid Arthritis

Reference	Therapeutic Approach	Target / Pathway	Animal Model	Method / Approach	Key Findings
Ding et al., 2023 ³⁰	MAPK Inhibition (p38)	p38 MAPK	CIA rats	Pharmacological inhibitor administered systemically	Reduced TNF- α and IL-6, decreased synovial inflammation, protected cartilage
Dwivedi et al., 2024 ³¹	MAPK Inhibition (ERK/JNK)	ERK, JNK	TNF-transgenic mice	Selective pharmacological inhibition	Decreased synovial fibroblast proliferation, downregulated MMP activity, limited tissue destruction
Huang et al., 2021 ³²	PI3K/Akt Inhibition	PI3K/Akt	CIA mice	Small-molecule inhibitor delivered systemically	Reduced synovial angiogenesis, suppressed osteoclast-mediated bone erosion, attenuated fibroblast hyperplasia
Liu et al., 2021 ³³	Liposomal siRNA Delivery	TNF- α / IL-6	CIA mice	Liposome-encapsulated siRNA, intravenous administration	Reduced paw swelling, synovial inflammation; prolonged siRNA stability; localized cytokine downregulation
Koenders & van den Berg, 2015 ³⁴	Polymeric Nanoparticles	Methotrexate / Dexamethasone	CIA rats	Biodegradable polymeric nanoparticles, targeted injection	Enhanced drug accumulation in joints, improved therapeutic outcomes, reduced systemic toxicity
Liao et al., 2025 ³⁵	Ligand-Modified Nanoparticles	Antibody or folate-targeted	CIA mice	Ligand-conjugated nanoparticles, systemic administration	Selective uptake by activated synovial fibroblasts, decreased joint inflammation, improved tissue specificity

5. DISCUSSION

A complex interplay of inflammatory mediators causes rheumatoid arthritis (RA) and preclinical experiments using animal models have played a significant role in the uncovering of these mechanisms. Cytokine and intracellular signaling pathway inhibition have repeatedly resulted in significant improvements of synovial inflammation, cartilage damage, and bone erosion³⁶⁻³⁸. The gain of knowledge and background evidence does not only emphasize the effectiveness of treating diseases with TNF- α , IL-6 and IL-1 but also the role of intracellular cascades, such as JAK-STAT and NF- κ B, in the coordination of immune responses. The new measures including the inhibition of MAPK/PI3K-Akt and nanoparticle-based drug delivery add to the therapeutic range further offering multi-target control and tissue-specific delivery. Collectively, these results place these models of animals as important in the

understanding of disease processes, testing of new therapeutic agents, and informing future translational studies on RA³⁹.

5.1. Interpretation and Analysis of Findings

Animal-experiments have continually shown that inflammatory pathways are key mediators of RA pathogenesis, and that these pathways may be used to effectively mitigate the effects of the disease including synovial inflammatory responses, cartilage breakdown, and bone erosion. Targeted interventions, especially those against TNF- alpha, IL-6 and IL- 1 have been demonstrated to have strong efficacy in models like CIA, AIA and TNF- transgenic mice. The early disease phase is the most effective in terms of TNF-alpha inhibition that stops the downward cascade of inflammatory cytokine and osteoclast-mediated bone resorption. IL-6 blockade has both systemic and local effects, such as balancing the activity of Th17/Treg, whereas IL-1 blockage is a powerful method of preserving the cartilage but can induce compensatory cytokines during long-term administration⁴⁰.

JAK-STAT and NF- κB intracellular signaling pathways are nodal points that sum up various cytokine signals. NF-KB inhibitors equally suppress adaptive immunity by deterring Th17 differentiation and systemic cytokine production, but in comparison, NF-KB inhibition of innate and adaptive response inhibits synovial fibroblast activation and osteoclast recruitment. All these strategies work together to offer complementary mechanisms of action.

The therapeutic potential is further expanded by emerging approaches, such as MAPK and PI3K/Akt inhibitors and nanoparticle-based delivery systems, and can no longer be limited to the traditional target. It has been reported that preclinical studies show that these strategies can decrease inflammation as well as safeguard joint architecture by means of multi-pathway engagement and the delivery of tissue-specific drugs. Such delivery as a nanoparticle, e.g. increases drug stability, increases circulation and selective uptake by inflamed synovium, and less toxicity, systemically⁴¹.

5.2. Implications and Significance

The preclinical evidence has a number of significant implications in the RA therapy:

- 1. Vindication of Therapeutic Targets:** Animal modeling offers good proof-of-concept in support of TNF-alpha, IL-6, IL-1, JAK-STAT, NF-κB, MAPK and PI3K/Akt as actionable therapeutic targets. This helps in continued clinical translation of biologics and small-molecule inhibitors⁴².
- 2. Considerations of Timing and Disease Stage:** Cytokine blockade and in particular TNF-alpha blockade is very disease stage-dependent. The earlier intervention can avoid irreversible joint damage and the late intervention can be associated with the combination therapies that address the various pathways.
- 3. Pathway Redundancy and Compensation:** Compensatory activation of other inflammatory mediators may be elicited by long-term blockade of just one cytokine, e.g. IL-1. This indicates the necessity of multi-target interventions and rational combination of drugs to obtain long-term responses.
- 4. Potential to Tissue-Specific Therapy:** With studies to date showing targeted inhibition in synovial fibroblasts or immune cells, e.g., in NF-κB studies and nanoparticles-delivery, this could reduce the systemic immunosuppression effect, allowing enhanced safety profiles.

5. Preclinical Foundation of Novel Therapeutics: New therapies including nanoparticle-based delivery systems and dual-pathway inhibitors are offering new approaches to improving therapeutic efficacy, joint preservation, and decreasing the drug side effects.

5.3. Gaps in Current Research

In spite of the comprehensive preclinical activity there are a number of gaps:

- **Translational Shortcomings:** Rodent models are useful, but not similar to human immune responses. Translational predictability may not be completely replicated by cytokines, immune cell subsets and disease chronicity, which may differ compared to human RA.
- **Long-term Safety and Efficacy:** The majority of the studies evaluate short-term results. The long-term consequences of pathway inhibition are not well studied, in particular, on the systemic immunity and bone homeostasis.
- **Combination Therapies:** There are minimal studies that examine synergistic or additive abilities of combined cytokine and intracellular pathway inhibition, which might be essential to surmount redundancy and induce lasting remission⁴³.
- **Delivery Optimization:** Nanoparticles have a potential, but the problems of dosage and biodistribution and the immunogenicity potential need to be investigated.
- **Scarcity of Animal Model Variety:** The existing studies are based on CIA and TNF-Transgenic mice. Other models of chronic and relapsing disease might enhance the insights into the therapeutic efficacy in various RA phenotypes.

5.4. Future Research Directions

In order to fill these gaps and enable the translation of preclinical results to clinical translation, future research should be done to:

1. **Longitudinal Studies:** Long-term studies in animal models: Long-term studies can be used to determine the effectiveness of pathway-specific therapies, their safety and immunological effects⁴⁴.
2. **Combination and Multi-Target Strategies:** Use dual or triple inhibition of complementary pathways (e.g. TNF- alpha + IL- 6 + JAK) to eliminate compensatory responses and improve persistence of responses.
3. **Improved Delivery Plans:** Continue to develop tissue-specific drug delivery systems, such as nanoparticles and ligand-targeted carriers, which are optimized biodistribution, controlled release, and the reduced effects in the off target⁴⁵.
4. **Various Animal models:** Use more RA models such as humanization of mice and models of chronic disease or refractory disease to improve the prediction of clinical outcome.
5. **Mechanistic Elucidation:** Inquire into downstream signaling cross-talk and molecular networks of therapeutic responses to discover new biomarkers and better stratify patients to be recruited in future clinical trials.
6. **Translational Bridging Studies:** To understand interspecies differences in cytokine networks, signaling pathways and drug metabolism better to be able to more easily translate to human therapy, include comparative immunology studies.

6. CONCLUSION

This review emphasizes how inflammatory pathways play a critical role in the pathogenesis and progression of rheumatoid arthritis (RA) and how targeted intervention of inflammatory pathways has a great potential as therapeutic agent in preclinical models of animal research. Studies that concentrate on cytokine inhibition (TNF- α , IL- 6, IL- 1), intracellular signaling modulation (JAK-STAT, NF- κ B, MAPK, PI3K/ Akt), and new nanoparticle-based drug delivery have shown significant decreases in inflammation at the synovia, cartilage degeneration, and bone erosion. This evidence highlights the importance of animal models in the understanding of the molecular mechanisms and future clinical development of new RA treatment methods. Gaps in the areas of the review are also identified as the necessity of long-term efficacy studies, the investigation of combination treatment options, and the streamlining of targeted delivery options. Future studies should look into multi-targets, advanced drug delivery methods and various animal models to close translational gaps and towards more effective, lasting and safe treatment of RA.

REFERENCES

1. Noack, M., & Miossec, P. (2017, June). Selected cytokine pathways in rheumatoid arthritis. In *Seminars in immunopathology* (Vol. 39, No. 4, pp. 365-383). Berlin/Heidelberg: Springer Berlin Heidelberg.
2. McInnes, I. B., & Schett, G. (2017). Pathogenetic insights from the treatment of rheumatoid arthritis. *The Lancet*, 389(10086), 2328-2337.
3. Szekanecz, Z., & Koch, A. E. (2016). Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. *Nature Reviews Rheumatology*, 12(1), 5-13.
4. Abbasi, M., Mousavi, M. J., Jamalzehi, S., Alimohammadi, R., Bezvan, M. H., Mohammadi, H., & Aslani, S. (2019). Strategies toward rheumatoid arthritis therapy; the old and the new. *Journal of cellular physiology*, 234(7), 10018-10031.
5. Prasad, P., Verma, S., Surbhi, Ganguly, N. K., Chaturvedi, V., & Mittal, S. A. (2023). Rheumatoid arthritis: advances in treatment strategies. *Molecular and cellular biochemistry*, 478(1), 69-88.
6. Alunno, A., Carubbi, F., Giacomelli, R., & Gerli, R. (2017). Cytokines in the pathogenesis of rheumatoid arthritis: new players and therapeutic targets. *BMC rheumatology*, 1(1), 3.
7. Gao, W., McCormick, J., Connolly, M., Balogh, E., Veale, D. J., & Fearon, U. (2015). Hypoxia and STAT3 signalling interactions regulate pro-inflammatory pathways in rheumatoid arthritis. *Annals of the rheumatic diseases*, 74(6), 1275-1283.
8. Fang, Q., Zhou, C., & Nandakumar, K. S. (2020). Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. *Mediators of inflammation*, 2020(1), 3830212.
9. Chen, Z., Bozec, A., Ramming, A., & Schett, G. (2019). Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. *Nature Reviews Rheumatology*, 15(1), 9-17.
10. Nogueira, E., Gomes, A. C., Preto, A., & Cavaco-Paulo, A. (2016). Folate-targeted nanoparticles for rheumatoid arthritis therapy. *Nanomedicine: Nanotechnology, Biology and Medicine*, 12(4), 1113-1126.
11. Narazaki, M., Tanaka, T., & Kishimoto, T. (2017). The role and therapeutic targeting of IL-6 in rheumatoid arthritis. *Expert review of clinical immunology*, 13(6), 535-551.

12. Mueller, A. L., Payandeh, Z., Mohammadkhani, N., Mubarak, S. M., Zakeri, A., Alagheband Bahrami, A., ... & Shakibaei, M. (2021). Recent advances in understanding the pathogenesis of rheumatoid arthritis: new treatment strategies. *Cells*, 10(11), 3017.
13. Kondo, N., Kuroda, T., & Kobayashi, D. (2021). Cytokine networks in the pathogenesis of rheumatoid arthritis. *International journal of molecular sciences*, 22(20), 10922.
14. Malemud, C. J. (2018). The role of the JAK/STAT signal pathway in rheumatoid arthritis. *Therapeutic advances in musculoskeletal disease*, 10(5-6), 117-127.
15. Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N. J., & Xu, J. (2018). Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. *Bone research*, 6(1), 15.
16. Tanaka, Y., Luo, Y., O'Shea, J. J., & Nakayamada, S. (2022). Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. *Nature Reviews Rheumatology*, 18(3), 133-145.
17. Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., & Li, Y. (2021). Inflammation and tumor progression: signaling pathways and targeted intervention. *Signal transduction and targeted therapy*, 6(1), 263.
18. Conaghan, P. G., Cook, A. D., Hamilton, J. A., & Tak, P. P. (2019). Therapeutic options for targeting inflammatory osteoarthritis pain. *Nature Reviews Rheumatology*, 15(6), 355-363.
19. Conigliaro, P., Triggiani, P., De Martino, E., Fonti, G. L., Chimenti, M. S., Sunzini, F., ... & Perricone, R. (2019). Challenges in the treatment of rheumatoid arthritis. *Autoimmunity reviews*, 18(7), 706-713.
20. Lin, Y. J., Anzaghe, M., & Schülke, S. (2020). Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. *Cells*, 9(4), 880.
21. Simon, L. S., Taylor, P. C., Choy, E. H., Sebba, A., Quebe, A., Knopp, K. L., & Porreca, F. (2021, February). The Jak/STAT pathway: A focus on pain in rheumatoid arthritis. In *Seminars in arthritis and rheumatism* (Vol. 51, No. 1, pp. 278-284). WB Saunders.
22. Malemud, C. J. (2015). The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis?. *Future medicinal chemistry*, 7(9), 1137-1147.
23. Dai, Q., Zhou, D., Xu, L., & Song, X. (2018). Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats. *Drug design, development and therapy*, 4095-4105.
24. Burmester, G. R., & Pope, J. E. (2017). Novel treatment strategies in rheumatoid arthritis. *The Lancet*, 389(10086), 2338-2348.
25. Rayego-Mateos, S., Morgado-Pascual, J. L., Opazo-Ríos, L., Guerrero-Hue, M., García-Caballero, C., Vázquez-Carballo, C., ... & Egido, J. (2020). Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. *International journal of molecular sciences*, 21(11), 3798.
26. Zhang, L., Zhang, Y., & Pan, J. (2021). Immunopathogenic mechanisms of rheumatoid arthritis and the use of anti-inflammatory drugs. *Intractable & rare diseases research*, 10(3), 154-164.
27. Yang, X., Chang, Y., & Wei, W. (2020). Emerging role of targeting macrophages in rheumatoid arthritis: focus on polarization, metabolism and apoptosis. *Cell proliferation*, 53(7), e12854.
28. Croft, M., & Siegel, R. M. (2017). Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. *Nature Reviews Rheumatology*, 13(4), 217-233.

29. Kumar, L. D., Karthik, R., Gayathri, N., & Sivasudha, T. (2016). Advancement in contemporary diagnostic and therapeutic approaches for rheumatoid arthritis. *Biomedicine & Pharmacotherapy*, 79, 52-61.
30. Ding, Q., Hu, W., Wang, R., Yang, Q., Zhu, M., Li, M., ... & Zhu, Y. Z. (2023). Signaling pathways in rheumatoid arthritis: implications for targeted therapy. *Signal transduction and targeted therapy*, 8(1), 68.
31. Dwivedi, S. D., Yadav, K., Bhoi, A., Sahu, K. K., Sangwan, N., Singh, D., & Singh, M. R. (2024). Targeting pathways and integrated approaches to treat rheumatoid arthritis. *Critical Reviews™ in Therapeutic Drug Carrier Systems*, 41(4).
32. Huang, J., Fu, X., Chen, X., Li, Z., Huang, Y., & Liang, C. (2021). Promising therapeutic targets for treatment of rheumatoid arthritis. *Frontiers in immunology*, 12, 686155.
33. Liu, S., Ma, H., Zhang, H., Deng, C., & Xin, P. (2021). Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. *Clinical Immunology*, 230, 108793.
34. Koenders, M. I., & van den Berg, W. B. (2015). Novel therapeutic targets in rheumatoid arthritis. *Trends in pharmacological sciences*, 36(4), 189-195.
35. Liao, H., Zheng, J., Lu, J., & Shen, H. L. (2025). NF-κB signaling pathway in rheumatoid arthritis: mechanisms and therapeutic potential. *Molecular Neurobiology*, 62(6), 6998-7021.
36. Dudics, S., Langan, D., Meka, R. R., Venkatesha, S. H., Berman, B. M., Che, C. T., & Moudgil, K. D. (2018). Natural products for the treatment of autoimmune arthritis: their mechanisms of action, targeted delivery, and interplay with the host microbiome. *International Journal of Molecular Sciences*, 19(9), 2508.
37. Verma VS, Mishra A, Badwaik HR, Alexander A, Ajazuddin A. Molecular docking for rationalizing the use of linkers in polymer drug conjugates design for pegylated anti-inflammatory drug delivery. *Int J Health Sci (Qassim)*. 2022;6626-46.
38. Dewangan D, Verma VS, Nakhate KT, Tripathi DK, Kashyap P, Dhongade H. Synthesis, characterization, and screening for analgesic and anti-inflammatory activities of new 1,3,4-oxadiazole derivatives linked to quinazolin-4-one ring. *Medicinal Chemistry Research*. 2016;25(10):2143–54. Available from:
39. Dewangan D, Nakhate KT, Verma VS, Nagori K, Tripathi DK. Synthesis, Characterization, and Screening for Analgesic and Anti-Inflammatory Activities of Schiff Bases of 1,3,4-Oxadiazoles Linked With Quinazolin-4-One. *J Heterocycl Chem*. 2017;54(6):3187–94.
40. McInnes, I. B., Buckley, C. D., & Isaacs, J. D. (2016). Cytokines in rheumatoid arthritis—shaping the immunological landscape. *Nature Reviews Rheumatology*, 12(1), 63-68.
41. Banchhor M, Kumar D, Kashyap G, Sahu MK, Verma VS. Role of Cannabinoids in Chronic Pain Management: A Pharmacodynamic Perspective. *Journal of Pharmacology, Genetics and Molecular Biology*. 2025;213–29.
42. Brzustewicz, E., & Bryl, E. (2015). The role of cytokines in the pathogenesis of rheumatoid arthritis—Practical and potential application of cytokines as biomarkers and targets of personalized therapy. *Cytokine*, 76(2), 527-536.
43. Buch, M. H., Eyre, S., & McGonagle, D. (2021). Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. *Nature Reviews Rheumatology*, 17(1), 17-33.
44. Malhotra, H., Garg, V., & Singh, G. (2021). Biomarker approach towards rheumatoid arthritis treatment. *Current Rheumatology Reviews*, 17(2), 162-175.

45. Dewangan D, Nakhate KT, Verma VS, Nagori K, Badwaik H, Nair N, et al. Synthesis and Molecular Docking Study of Novel Hybrids of 1,3,4-Oxadiazoles and Quinoxaline as a Potential Analgesic and Anti-Inflammatory Agents. *J Heterocycl Chem* . 2018;55(12):2901–10.